Trong không gian Oxyz, lực không đổi \(\vec F = 3\vec i + 5\vec j + 10\vec k\) làm di chuyển một vật dọc theo đoạn thẳng từ \(M(1;0;2)\) đến \(N(5;3;8)\). Tìm công sinh ra nếu khoảng cách được tính bằng mét và lực được tính bằng newton.
- Áp dụng biểu thức toạ độ của hiệu các vectơ.
- Công sinh ra bởi lực không đổi \(\vec F\) khi di chuyển vật dọc theo vectơ \(\overrightarrow {MN} \) được tính bằng tích vô hướng của lực và vectơ di chuyển.
Vectơ di chuyển từ điểm M(1, 0, 2) đến điểm N(5, 3, 8) được tính bằng hiệu của hai tọa độ điểm:
\(\overrightarrow {MN} = \vec N - \vec M = (5 - 1)\vec i + (3 - 0)\vec j + (8 - 2)\vec k\)
\(\overrightarrow {MN} = 4\vec i + 3\vec j + 6\vec k\)
Công sinh ra bởi lực không đổi \(\vec F\) khi di chuyển vật dọc theo vectơ \(\overrightarrow {MN} \) được tính bằng tích vô hướng của lực và vectơ di chuyển:
\(A = \vec F \cdot \overrightarrow {MN} \)
Tính tích vô hướng:
\(\vec F \cdot \overrightarrow {MN} = (3 \cdot 4) + (5 \cdot 3) + (10 \cdot 6)\)
\(\vec F \cdot \overrightarrow {MN} = 12 + 15 + 60\)
\(\vec F \cdot \overrightarrow {MN} = 87\)
Công sinh ra bởi lực \(\vec F\) khi di chuyển từ M đến N là 87 joules (J).
Các bài tập cùng chuyên đề
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow u = \left( {1;8;6} \right),\overrightarrow v = \left( { - 1;3; - 2} \right)\) và \(\overrightarrow w = \left( {0;5;4} \right)\). Tìm tọa độ của vectơ \(\overrightarrow u - 2\overrightarrow v + \overrightarrow w \).
Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow a \) là gì?
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {1; - 2;2} \right),\overrightarrow b = \left( { - 2;0;3} \right)\). Khẳng định nào dưới đây là sai?
A. \(\overrightarrow a + \overrightarrow b = \left( { - 1; - 2;5} \right)\).
B. \(\overrightarrow a - \overrightarrow b = \left( {3; - 2; - 1} \right)\).
C. \(3\overrightarrow a = \left( {3; - 2;2} \right)\).
D. \(2\overrightarrow a + \overrightarrow b = \left( {0; - 4;7} \right)\).
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (2;3 - 2)\) và \(\overrightarrow b = (3;1; - 1)\). Tọa độ của vecto \(\overrightarrow a - \overrightarrow b \) là:
A. (1;-2;1)
B. (5;4;-3)
C. (-1;2;-1)
D. (-1;2;-3)
Cho hai vecto \(\overrightarrow u = (3; - 4;5),\overrightarrow v = (5;7; - 1)\). Tọa độ của vecto \(\overrightarrow u + \overrightarrow v \) là:
A. (8;3;4)
B. (-2;-11;6)
C. (2;11;-6)
D. (-8;-3;-4)
Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (5;4; - 1)\). Tọa độ của vecto \(\overrightarrow u - \overrightarrow v \) là:
A. (4;6;4)
B. (-4;-6;4)
C. (4;6;-4)
D. (-4;-6;-4)
Cho vecto \(\overrightarrow u = (1; - 1;3)\). Tọa độ của vecto \( - 3\overrightarrow u \) là:
A. (3;-3;9)
B. (3;-3;-9)
C. (-3;3;-9)
D. (3;3;9)
Một thiết bị thăm dò đáy biển đang lặn với vận tốc \(\overrightarrow v = (10;8; - 3)\) (Hình 1). Cho biết vận tốc của dòng hải lưu của vùng biển là \(\overrightarrow w = (3,5;1;0)\)
a) Tìm toạ độ của vectơ tổng hai vận tốc \(\overrightarrow v \) và \(\overrightarrow w \)
b) Giả sử thiết bị thăm dò lặn với vận tốc \(\overrightarrow u = (7;2;0)\), hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.
Cho ba vectơ \(\overrightarrow a = (2; - 5;3)\), \(\overrightarrow b = (0;2; - 1)\), \(\overrightarrow b = (1;7;2)\)
a) Tìm toạ độ của vectơ \(\overrightarrow d = 4\overrightarrow a - \frac{1}{3}\overrightarrow b + 3\overrightarrow c \)
b) Tìm toạ độ của vectơ \(\overrightarrow e = \overrightarrow a - 4\overrightarrow b - 2\overrightarrow c \)
c) Chứng minh \(\overrightarrow a \) cùng phương với vectơ \(\overrightarrow m = ( - 6;15; - 9)\)
Trong không gian Oxyz, cho hai vectơ , và số m.
a) Biểu d\(\overrightarrow a = ({a_1};{a_2};{a_3})\)iễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Biểu diễn các vectơ \(\overrightarrow a + \overrightarrow b \), \(\overrightarrow a - \overrightarrow b \), \(m\overrightarrow a \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó suy ra toạ độ của các vectơ \(\overrightarrow a + \overrightarrow b \), \(\overrightarrow a - \overrightarrow b \), \(m\overrightarrow a \)
Cho hai vectơ \(\overrightarrow a \) = (0; 1; 3) và \(\overrightarrow b \) = (–2; 3; 1). Tìm toạ độ của vectơ \(2\overrightarrow b - \frac{3}{2}\overrightarrow a \)
Cho hai điểm A(–1; 2; 3), B = (1; 0; 2). Toạ độ điểm M thoả mãn \(\overrightarrow {AB} = 2\overrightarrow {MA} \) là
A. \(M( - 2;3;\frac{7}{2})\)
B. \(M( - 2; - 3;\frac{7}{2})\)
C. \(M( - 2;3;7)\).
D. \(M( - 4;6;7)\).
Cho biết máy bay A đang bay với vectơ vận tốc \(\overrightarrow a = (300;200;400)\)(đơn vị: km/h). Máy bay B bay cùng hướng và có tốc độ gấp ba lần tốc độ của máy bay A.
a) Tìm toạ độ vectơ vận tốc \(\overrightarrow b \) của máy bay B.
b) Tính tốc độ của máy bay B.
Cho \(A\left( {4; - 3;1} \right)\) và vectơ \(\overrightarrow u = \left( {5;2; - 3} \right)\). Biểu diễn các vectơ sau đây theo các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).
a) \(\overrightarrow {OA} \);
b) \(4\overrightarrow u \).
Cho điểm \(M\left( {5; - 7; - 2} \right)\) và vectơ \(\overrightarrow a = \left( { - 3;0;1} \right)\). Hãy biểu diễn mỗi vectơ sau theo các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).
a) \(\overrightarrow {OM} \);
b) \(\overrightarrow a \).
Tìm toạ độ ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) thoả mãn \(\overrightarrow a = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k ,\overrightarrow b = - 3\overrightarrow j + 4\overrightarrow k ,\overrightarrow c = - \overrightarrow i - 2\overrightarrow j \).
Phát biểu nào nào sau đây là đúng?
A. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + k\overrightarrow b \).
B. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = \overrightarrow a k + \overrightarrow b k\).
C. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(\left( {\overrightarrow a + \overrightarrow b } \right)k = k\overrightarrow a + \overrightarrow b k\).
D. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + \overrightarrow b k\).
Trong không gian với hệ toạ độ \(Oxyz\), cho \(\overrightarrow a = \left( {1; - 3; - 2} \right),\overrightarrow b = \left( {4; - 1;2} \right)\). Toạ độ của vectơ \(\overrightarrow a - \overrightarrow b \) là:
A. \(\left( {3;2;4} \right)\)
B. \(\left( {5; - 4;0} \right)\)
C. \(\left( { - 3; - 2; - 4} \right)\)
D. \(\left( { - 3; - 2;0} \right)\)
Cho hai vectơ \(\overrightarrow u = \left( {3;4; - 5} \right),\overrightarrow v = \left( {5; - 7;1} \right)\). Toạ độ của vectơ \(\overrightarrow u + \overrightarrow v \) là:
A. \(\left( {8;11; - 4} \right)\)
B. \(\left( { - 2;11; - 6} \right)\)
C. \(\left( {8; - 3; - 4} \right)\)
D. \(\left( { - 8;3;4} \right)\)
Cho hai vectơ \(\overrightarrow u = \left( {2; - 2;1} \right),\overrightarrow v = \left( {5; - 4; - 1} \right)\). Toạ độ của vectơ \(\overrightarrow u - \overrightarrow v \) là:
A. \(\left( { - 3;2;2} \right)\)
B. \(\left( {7; - 6;0} \right)\)
C. \(\left( {3; - 2; - 2} \right)\)
D. \(\left( { - 3; - 6;0} \right)\)
Cho vectơ \(\overrightarrow u = \left( {1;2; - 3} \right)\). Toạ độ của vectơ \( - 3\overrightarrow u \) là:
A. \(\left( {3;6; - 9} \right)\)
B. \(\left( { - 3; - 6; - 9} \right)\)
C. \(\left( {3;6;9} \right)\)
D. \(\left( { - 3; - 6;9} \right)\)
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow a = \left( { - 4;6;7} \right)\), \(\overrightarrow b = \left( {1;0; - 3} \right)\) và \(\overrightarrow c = \left( {8;7;2} \right)\). Tính tọa độ của các vectơ sau:
a) \(\overrightarrow m = 2\overrightarrow a - 3\overrightarrow b + \overrightarrow c \);
b) \(\overrightarrow n = \overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \).
Trong không gian Oxyz, cho ba vectơ \(\vec a = \left( { - 1;0;3} \right),\vec b = \left( {2;1;0} \right),\vec c = \left( { - 2;3;5} \right)\). Tìm toạ độ của \(\vec x = 2\vec a - \frac{1}{2}\vec b - 3\vec c\).
Trong không gian Oxyz, cho ba điểm A(5; -3; 0), B(2; 1; -1), C(4; 1; 2).
a) Tìm tọa độ của vectơ \(\vec u = 2\overrightarrow {AB} + \overrightarrow {AC} - 5\overrightarrow {BC} \).
b) Tìm điểm N sao cho \(2\overrightarrow {NA} = - \overrightarrow {NB} \)
Cho hai vectơ \(\vec a = (2;4;1),\vec b = ( - 4;0;4)\). Toạ độ của vectơ \(\vec a + \vec b\) là
A. \(( - 2; - 4; - 5)\).
B. \(( - 2; - 4;5)\).
C. \(( - 2;4;5)\).
D. \((2;4; - 5)\).
Cho ba điểm \(A(3;5;2),B(2;2;1),C(1; - 1;4)\). Toạ độ của vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \) là
A. \((3;9;1)\).
B. \(( - 3; - 9;1)\).
C. \((6;6;7)\).
D. \((1;3; - 3)\).
Hình bình hành ABCD có \(A(1;0;3)\), \(B(2;3; - 4)\), \(C( - 3;1;2)\). Tọa độ điểm \(D\) là:
A. \(( - 4; - 2;9)\).
B. \((2; - 4;5)\).
C. \(( - 2;4; - 5)\).
D. \((4;2; - 9)\).
Trong không gian Oxyz, cho \(\overrightarrow a = (2;1;3)\) và \(\overrightarrow b = ( - 1;2;1)\). Tọa độ của vecto \(\overrightarrow a + \overrightarrow b \) là