Đề bài

Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) (làm tròn kết quả đến hàng đơn vị), biết \(\left( {{P_1}} \right):5x + 12y - 13z - 14 = 0\) và \(\left( {{P_2}} \right):13x - 5y - 12z + 7 = 0\).

Phương pháp giải

‒ Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}}  = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:

\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).

Lời giải của GV Loigiaihay.com

Mặt phẳng \(\left( {{P_1}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {5;12; - 13} \right)\).

Mặt phẳng \(\left( {{P_2}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {13; - 5; - 12} \right)\).

Côsin của góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) bằng:

\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {5.13 + 12.\left( { - 5} \right) - 13.\left( { - 12} \right)} \right|}}{{\sqrt {{5^2} + {{12}^2} + {{\left( { - 13} \right)}^2}} .\sqrt {{{13}^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{161}}{{338}}\).

Vậy \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) \approx {62^ \circ }\).

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, hai mặt phẳng sau đây có vuông góc với nhau hay không?

\(\left( \alpha  \right):3x + y - z + 1 = 0,\left( \beta  \right):9x + 3y - 3z + 3 = 0\).

 
Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha  \right):Ax + By + Cz + D = 0\), \(\left( \beta  \right):A'x + B'y + C'z + D' = 0\) với hai vectơ pháp tuyến \(\overrightarrow n  = \left( {A;B;C} \right),\overrightarrow {n'}  = \left( {A';B';C'} \right)\) tương ứng.

a) Góc giữa hai mặt phẳng \(\left( \alpha  \right),\left( \beta  \right)\) và góc giữa hai giá của \(\overrightarrow n ,\overrightarrow {n'} \) có mối quan hệ gì?

b) Hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến \(\overrightarrow n ,\overrightarrow {n'} \) có mối quan hệ gì?

 
Xem lời giải >>
Bài 3 :

Hãy trả lời câu hỏi đã được nêu ra trong tình huống mở đầu.

 
Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, tính góc giữa hai mặt phẳng \(\left( P \right):x - \sqrt 2 y + z - 2 = 0\) và \(\left( {Oxz} \right):y = 0\).

 
Xem lời giải >>
Bài 5 :

Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n  = \left( {A;B;C} \right),\overrightarrow {n'}  = \left( {A';B';C'} \right)\). Lấy các đường thẳng \(\Delta \), \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow n ,\overrightarrow {n'} \) (H.5.36)

a) Góc giữa hai mặt phẳng (P) và (Q) và góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) có mối quan hệ gì?

b) Tính côsin của góc giữa hai mặt phẳng (P) và (Q).

 
Xem lời giải >>
Bài 6 :

Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S. ABCD, có đáy là hình vuông với cạnh dài 230m, các cạnh bên bằng nhau và dài 219m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).

Xem lời giải >>
Bài 7 :

Trong không gian Oxyz, tính góc giữa mặt phẳng (P): \(x + y + z - 1 = 0\) và mặt phẳng Oxy.

Xem lời giải >>
Bài 8 :

Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4m; 4,4m; 4,8m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

Xem lời giải >>
Bài 9 :

Trong Ví dụ 10, tính góc giữa hai mặt phẳng (BCC’B’) và (CDA’B’).

Xem lời giải >>
Bài 10 :

Cho mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {A;B;C} \right)\). Tính côsin của góc giữa mặt phẳng (P) và các mặt phẳng tọa độ.

Xem lời giải >>
Bài 11 :

Cho hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\). Gọi \(\overrightarrow {{n_1}}  = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}}  = \left( {{A_2};{B_2};{C_2}} \right)\) lần lượt là hai vectơ pháp tuyến của \(\left( {{P_1}} \right)\), \(\left( {{P_2}} \right)\); \({\Delta _1},{\Delta _2}\) lần lượt là giá của hai vectơ \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) (Hình 33). So sánh:

a) \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right)\) và \(\cos \left( {{\Delta _1},{\Delta _2}} \right)\);

b) \(\cos \left( {{\Delta _1},{\Delta _2}} \right)\) và \(\left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\).

Xem lời giải >>
Bài 12 :

Mặt phẳng \(\left( P \right):x - 2 = 0\) vuông góc với mặt phẳng nào sau đây?

A. \(\left( {{P_1}} \right):x + 2 = 0\).

B. \(\left( {{P_2}} \right):x + y - 2 = 0\).

C. \(\left( {{P_3}} \right):z - 2 = 0\).

D. \(\left( {{P_4}} \right):x + z - 2 = 0\).

Xem lời giải >>
Bài 13 :

Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):x + y + 2z - 1 = 0\) và \(\left( {{P_2}} \right):2x - y + z - 2 = 0\).

Xem lời giải >>
Bài 14 :

Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):2x + 2y - z - 1 = 0\) và \(\left( {{P_2}} \right):x - 2y - 2z + 3 = 0\).

Xem lời giải >>
Bài 15 :

Cho hai mặt phẳng \(\left( P \right)\) và \(\left( {P'} \right)\) có vectơ pháp tuyến lần lượt là \(\vec n = \left( {{n_1};{n_2};{n_3}} \right)\), \(\vec n' = \left( {{n_1}';{n_2}';{n_3}'} \right)\) (hình dưới dây).

Gọi \(d\) và \(d'\) là hai đường thẳng lần lượt vuông góc với \(\left( P \right)\) và \(\left( {P'} \right)\). Gốc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( {P'} \right)\) là góc giữa hai đường thẳng \(d\) và \(d'\). So sánh \(\cos \left( {\left( P \right),\left( {P'} \right)} \right)\) và \(\cos \left( {\vec n,\vec n'} \right).\)

Xem lời giải >>
Bài 16 :

Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( {P'} \right)\) trong mỗi trường hợp sau:

a) \(\left( P \right):3x + 7y - z + 4 = 0\) và \(\left( {P'} \right):x + y - 10z + 2025 = 0.\)

b) \(\left( P \right):x + y - 2z + 9 = 0\) và \(\left( {P'} \right):3x - 5y + z + 2024 = 0.\)

c) \(\left( P \right):x + z + 3 = 0\) và \(\left( {P'} \right):3y + 3z + 5 = 0.\)

Xem lời giải >>
Bài 17 :

Tính góc giữa hai mặt phẳng \(\left( P \right):4y + 4z + 1 = 0\) và \(\left( {P'} \right):7x + 7z + 2 = 0\).

Xem lời giải >>
Bài 18 :

Cho hai mặt phẳng \(\left( P \right):2x - y - z - 3 = 0\) và \(\left( Q \right):x - z - 2 = 0\). Góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng

A. \({30^o}\)

B. \({45^o}\)

C. \({60^o}\)

D. \({90^o}\)

Xem lời giải >>
Bài 19 :

Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).

Xem lời giải >>
Bài 20 :

Cho \(a,b\) và \(c\) khác 0, côsin của góc giữa hai mặt phẳng \(\left( P \right):ax + by + c = 0\) và \(\left( Q \right):by + cz + d = 0\) bằng:

A. \(\frac{{{b^2}}}{{\sqrt {\left( {{a^2} + {b^2} + {c^2}} \right)\left( {{b^2} + {c^2} + {d^2}} \right)} }}\).

B. \(\frac{{\left| b \right|}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right)} }}\).

C. \(\frac{{\left| b \right|}}{{\sqrt {\left( {{a^2} + {b^2} + {c^2}} \right)\left( {{b^2} + {c^2} + {d^2}} \right)} }}\).

D. \(\frac{{{b^2}}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right)} }}\).

Xem lời giải >>
Bài 21 :

Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ):

\(\left( {{P_1}} \right):5x + 12y - 13z + 14 = 0\) và \(\left( {{P_2}} \right):3x + 4y + 5z - 6 = 0\).

Xem lời giải >>
Bài 22 :

Tính góc giữa mặt phẳng \(\left( P \right):x - y = 0\) và mặt phẳng \(\left( {Oyz} \right)\).

Xem lời giải >>
Bài 23 :

Trong không gian Oxyz, tính góc giữa hai mặt phẳng:

\(\left( P \right):2x - y + 2z - 1 = 0\) và \(\left( Q \right):x + y - z = 0\)

Xem lời giải >>
Bài 24 :

Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái của ngôi nhà thuộc mặt phẳng \(\left( \alpha  \right):x + y + z - 1 = 0\). Hỏi mái nhà có độ dốc bằng bao nhiêu độ?

Xem lời giải >>
Bài 25 :

Để chuẩn bị cho chuyến đi dã ngoại, nhóm bạn Đức thiết kế lều cắm trại dạng hình chóp từ giác đều có đáy là hình vuông cạnh 4m. Theo bản vẽ thiết kế thì góc giữa hai mặt bên của lều bằng 60°. Bằng phương pháp tọa độ, hãy tính chiều cao của lều này.

Xem lời giải >>
Bài 26 :

Trong không gian Oxyz, tính góc giữa mặt phẳng \((\alpha ):\sqrt 3 x - y + 2 = 0\) và các mặt phẳng toạ độ \((Oxy)\), \((Oxz)\), \((Oyz)\).

Xem lời giải >>
Bài 27 :

Cho hai mặt phẳng \((\alpha )\) và \((\beta )\) lần lượt có các vectơ pháp tuyến là \(\vec n\) và \(\vec n'\). Lấy hai đường thẳng \(a\), \(a'\) cùng vuông góc với \((\alpha )\), và hai đường thẳng \(b\), \(b'\) cùng vuông góc với \((\beta )\). (Hình 5.28) Hỏi hai góc \((a,b)\) và \((a',b')\) có bằng nhau không? Vì sao?

Xem lời giải >>
Bài 28 :

Tính góc giữa các cặp mặt phẳng

a) \(\alpha :3x + 4y + 5z - 1 = 0\)  và \(\beta :2x + y + z - 3 = 0\)

b) \(\alpha :x - y + 2z - 1 = 0\) và \(\beta :x + 2y - z + 3 = 0\)

c) \(\alpha :x + 3y - 2z - 1 = 0\) và \(\beta :4x + 2y + 5z - 3 = 0\)

Xem lời giải >>
Bài 29 :

Cho tứ diện OABC có \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\), (\(a > 0,b > 0,c > 0\)). Gọi \(\alpha ,\beta ,\gamma \) lần lượt là các góc giữa các mặt phẳng \((OAB)\), \((OBC)\), \((OAC)\) với mặt phẳng \((ABC)\). Chứng minh rằng:

\({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  = 1.\)

Xem lời giải >>
Bài 30 :

Tính cosin của góc giữa hai mặt phẳng (P): x – 2y +3z – 8 = 0 và (Q): 3x + y – 2z + 2017 = 0.

Xem lời giải >>