Đề bài

Tìm giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right)\).

Phương pháp giải

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to  + \infty } c = c,\mathop {\lim }\limits_{x \to  - \infty } c = c\).

- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{{x^k}}} = 0\).

Lời giải của GV Loigiaihay.com

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right) = \mathop {\lim }\limits_{x \to  + \infty } {x^6}\left( {\frac{1}{x} - 1} \right)\left( {\frac{1}{{{x^2}}} - 1} \right)\left( {\frac{1}{{{x^3}}} - 1} \right) =  - \infty \).

Các bài tập cùng chuyên đề

Bài 1 :

Tính: \(\mathop {\lim }\limits_{x \to  - \infty } {x^4}.\)

Xem lời giải >>
Bài 2 :

Cho hàm số \(f\left( x \right) = x\) có đồ thị như ở Hình 9. Quan sát đồ thị đó và cho biết:

a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu.

b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần đâu.

Xem lời giải >>
Bài 3 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} + 2{x^2} - 1} \right)\);

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}}\);

c) \(\mathop {\lim }\limits_{x \to  - \infty } \sqrt {{x^2} - 2x + 3} \).

Xem lời giải >>
Bài 4 :

Cho m là một số thực. Biết \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] =  - \infty \). Xác định dấu của m.

Xem lời giải >>
Bài 5 :

Cho \(L = \mathop {\lim }\limits_{n \to  + \infty } \left( {{n^3} - 2{n^2} + 1} \right)\). Giá trị của L

A. \(L = 0\)          

B. \(L =  - \infty \)                  

C. \(L =  + \infty \)                 

D.\(L = 0\)

Xem lời giải >>
Bài 6 :

Tính \(\mathop {\lim }\limits_{x \to  - \infty } (1 - x)(1 - 2x)...(1 - 2018x)\).

Xem lời giải >>