Tìm giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right)\).
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c\).
- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0\).
\(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right) = \mathop {\lim }\limits_{x \to + \infty } {x^6}\left( {\frac{1}{x} - 1} \right)\left( {\frac{1}{{{x^2}}} - 1} \right)\left( {\frac{1}{{{x^3}}} - 1} \right) = - \infty \).
Các bài tập cùng chuyên đề
Tính: \(\mathop {\lim }\limits_{x \to - \infty } {x^4}.\)
Cho hàm số \(f\left( x \right) = x\) có đồ thị như ở Hình 9. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu.
b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần đâu.
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 2{x^2} - 1} \right)\);
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}}\);
c) \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {{x^2} - 2x + 3} \).
Cho m là một số thực. Biết \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = - \infty \). Xác định dấu của m.
Cho \(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right)\). Giá trị của L là
A. \(L = 0\)
B. \(L = - \infty \)
C. \(L = + \infty \)
D.\(L = 0\)
Tính \(\mathop {\lim }\limits_{x \to - \infty } (1 - x)(1 - 2x)...(1 - 2018x)\).