Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ
-
A.
\(480c{m^3}\)
-
B.
\(360c{m^3}\)
-
C.
\(240c{m^3}\)
-
D.
\(120c{m^3}\)
- Tính độ dài cạnh hình thoi, từ đó suy ra chu vi đáy và chiều cao lăng trụ.
- Tính diện tích đáy hình thoi \({S_{ABCD}} = \dfrac{1}{2}AC.BD\).
- Tính thể tích khối lăng trụ theo công thức \(V = Sh\).

Gọi \(O = AC \cap BD\) ta có: \(OA = 3cm\,;\,OB = 4cm\)
Xét tam giác vuông $OAB$ có: \(AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{3^2} + {4^2}} = 5cm\).
Khi đó chu vi đáy bằng \(P = 4.5 = 20 = 2AA' \Rightarrow AA' = 10\left( {cm} \right)\)
\({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}.6.8 = 24\left( {c{m^2}} \right)\)
Vậy \({V_{ABCD.A'B'C'D'}} = AA'.{S_{ABCD}} = 10.24 = 240\left( {c{m^3}} \right)\)
Đáp án : C
Các bài tập cùng chuyên đề
Công thức tính thể tích lăng trụ có diện tích đáy \(S\) và chiều cao \(h\) là:
Thể tích khối hộp chữ nhật có diện tích đáy \(S\) và độ dài cạnh bên \(a\) là:
Đề thi THPT QG – 2021 lần 1– mã 104
Thể tích của khối lập phương cạnh \(2a\) bằng:
Cho khối lăng trụ tam giác $ABC.A'B'C'$ có thể tích $V$. Trên đáy \(A'B'C'\) lấy điểm $M$ bất kì. Thể tích khối chóp $M.ABC$ tính theo $V$ bằng:
Cho lăng trụ xiên tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$, biết cạnh bên là \(a\sqrt 3 \) và hợp với đáy $ABC$ một góc \({60^0}\). Thể tích khối lăng trụ là:
Cho hình lăng trụ $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thoi cạnh $a$ và góc \(\widehat {A\,\,} = {60^0}\). Chân đường cao hạ từ $B'$ xuống $\left( {ABCD} \right)$ trùng với giao điểm 2 đường chéo, biết $BB' = a$ . Thể tích khối lăng trụ là:
Cho hình lăng trụ \(ABC.A'B'C'\) có \(AB = 2a,AC = a,AA' = \dfrac{{a\sqrt {10} }}{2},\widehat {BAC} = {120^0}\). Hình chiếu vuông góc của $C’$ lên $(ABC)$ là trung điểm của cạnh $BC$. Tính thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$?
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình vuông cạnh bằng $a$. Hình chiếu vuông góc của điểm $A'$ trên mặt phẳng $\left( {ABCD} \right)$ là trung điểm $I$ của cạnh $AB$. Biết \(A'C\) tạo với mặt phẳng đáy một góc \(\alpha \) với \(\tan \alpha = \dfrac{2}{{\sqrt 5 }}\). Thể tích khối chóp $A'.ICD$ là:
Cho khối lăng trụ tam giác $ABC.A'B'C'$ mà mặt bên $ABB'A'$ có diện tích bằng $4$. Khoảng cách giữa $CC'$ và mặt phẳng $\left( {ABB'A'} \right)$ bằng $7$. Thể tích khối lăng trụ là:
Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là:
Cho hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác cân \(AB = AC = a;\widehat {BAC} = {120^0}\) và $AB'$ vuông góc với $\left( {A'B'C'} \right)$ . Mặt phẳng $\left( {AA'C'} \right)$ tạo với mặt phẳng $\left( {A'B'C'} \right)$ một góc \({30^0}\). Thể tích khối lăng trụ $ABC.A'B'C'$ là:
Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:
Mệnh đề nào dưới đây sai?
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình chữ nhật với \(AB = \sqrt 3 ,AD = \sqrt 7 \). Hai mặt bên $\left( {ABB'A'} \right)$ và $\left( {ADD'A'} \right)$ lần lượt tạo với đáy những góc \({45^0}\) và \({60^0}\). Tính thể tích khối hộp nếu biết cạnh bên bằng $1$.
Cho hình lăng trụ xiên $ABC.A’B’C’$ có đáy $ABC$ là tam giác đều với tâm $O$. Hình chiếu của $C’$ trên $(ABC) $ là $O$. Tính thể tích của lăng trụ biết rằng khoảng cách từ $O$ đến $CC’$ là $a$ và 2 mặt bên $(ACC’A’)$ và $(BCC’B’)$ hợp với nhau góc \({90^0}\).
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy $ABC$ là tam giác vuông tại $A$. \(AB = a;AC = a\sqrt 3 \);\(AA' = 2a\). Thể tích khối lăng trụ \(ABC.A'B'C'\) là:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân tại $A$. \(AB = AC = 2a,\widehat {CAB} = {120^0}.\) Mặt phẳng \(\left( {AB'C'} \right)\) tạo với đáy một góc \({60^0}\). Thể tích khối lăng trụ là:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy $ABC$ là tam giác vuông tại $B$, \(\widehat {ACB} = {60^0}\), cạnh \(BC = a\), đường chéo \(A'B\) tạo với mặt phẳng \(\left( {ABC} \right)\) một góc \({30^0}\). Thể tích khối lăng trụ \(ABC.A'B'C'\) là:
Đáy của hình lăng trụ đứng tam giác \(ABC.A'B'C'\) là tam giác đều cạnh \(a = 4\) và biết diện tích tam giác \(A'BC\) bằng $8$ . Tính thể tích khối lăng trụ?
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?