Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân tại $A$. \(AB = AC = 2a,\widehat {CAB} = {120^0}.\) Mặt phẳng \(\left( {AB'C'} \right)\) tạo với đáy một góc \({60^0}\). Thể tích khối lăng trụ là:
-
A.
\(2{a^3}\)
-
B.
\(\dfrac{{3{a^3}}}{8}\)
-
C.
\(\dfrac{{{a^3}}}{3}\)
-
D.
\(3{a^3}\)
- Xác định góc giữa hai mặt phẳng \(\left( {AB'C'} \right)\) và \(\left( {A'B'C'} \right)\): góc giữa hai mặt phẳng là góc giữa hai đường thẳng nằm trong hai mặt phẳng và cùng vuông góc với giao tuyến.
- Tính độ dài đường cao \(h = AA'\).
- Tính diện tích đáy \({S_{A'B'C'}}\).
- Tính thể tích khối lăng trụ \(V = Sh\).

Gọi $D$ là trung điểm của $B'C'$. Vì tam giác \(A'B'C'\) cân tại $A'$ nên \(A'D \bot B'C'\) (trung tuyến đồng thời là đường cao).
Vì $ABC.A'B'C'$ là hình lăng trụ đứng nên $AA' \bot (A'B'C')$.
Ta có: \(\left. \begin{array}{l}A'D \bot B'C'\\AA' \bot B'C'\end{array} \right\} \Rightarrow B'C' \bot \left( {AA'D} \right) \Rightarrow B'C' \bot AD\)
\(\left. \begin{array}{l}\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'\\\left( {AB'C'} \right) \supset AD \bot B'C'\\\left( {A'B'C'} \right) \supset A'D \bot B'C'\end{array} \right\} \Rightarrow \widehat {\left( {\left( {AB'C'} \right);\left( {A'B'C'} \right)} \right)} = \widehat {\left( {AD;A'D} \right)} = \widehat {ADA'} = {60^0}\)
Vì tam giác \(A'B'C'\) cân tại $A'$ nên \(\widehat {DA'C'} = \dfrac{1}{2}\widehat {B'A'C'} = {60^0}\) (trung tuyến đồng thời là phân giác)
Xét tam giác vuông \(A'D'C'\) có: \(A'D = A'C'.cos60 = 2a.\dfrac{1}{2} = a\)
Xét tam giác vuông \(AA'D\) có: \(AA' = A'D.\tan 60 = a.\sqrt 3 \)
\({S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat {BAC} = \dfrac{1}{2}.2a.2a.\dfrac{{\sqrt 3 }}{2} = {a^2}\sqrt 3 \)
Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = a\sqrt 3 .{a^2}\sqrt 3 = 3{a^3}\)
Đáp án : D
Các bài tập cùng chuyên đề
Công thức tính thể tích lăng trụ có diện tích đáy \(S\) và chiều cao \(h\) là:
Thể tích khối hộp chữ nhật có diện tích đáy \(S\) và độ dài cạnh bên \(a\) là:
Đề thi THPT QG – 2021 lần 1– mã 104
Thể tích của khối lập phương cạnh \(2a\) bằng:
Cho khối lăng trụ tam giác $ABC.A'B'C'$ có thể tích $V$. Trên đáy \(A'B'C'\) lấy điểm $M$ bất kì. Thể tích khối chóp $M.ABC$ tính theo $V$ bằng:
Cho lăng trụ xiên tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$, biết cạnh bên là \(a\sqrt 3 \) và hợp với đáy $ABC$ một góc \({60^0}\). Thể tích khối lăng trụ là:
Cho hình lăng trụ $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thoi cạnh $a$ và góc \(\widehat {A\,\,} = {60^0}\). Chân đường cao hạ từ $B'$ xuống $\left( {ABCD} \right)$ trùng với giao điểm 2 đường chéo, biết $BB' = a$ . Thể tích khối lăng trụ là:
Cho hình lăng trụ \(ABC.A'B'C'\) có \(AB = 2a,AC = a,AA' = \dfrac{{a\sqrt {10} }}{2},\widehat {BAC} = {120^0}\). Hình chiếu vuông góc của $C’$ lên $(ABC)$ là trung điểm của cạnh $BC$. Tính thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$?
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình vuông cạnh bằng $a$. Hình chiếu vuông góc của điểm $A'$ trên mặt phẳng $\left( {ABCD} \right)$ là trung điểm $I$ của cạnh $AB$. Biết \(A'C\) tạo với mặt phẳng đáy một góc \(\alpha \) với \(\tan \alpha = \dfrac{2}{{\sqrt 5 }}\). Thể tích khối chóp $A'.ICD$ là:
Cho khối lăng trụ tam giác $ABC.A'B'C'$ mà mặt bên $ABB'A'$ có diện tích bằng $4$. Khoảng cách giữa $CC'$ và mặt phẳng $\left( {ABB'A'} \right)$ bằng $7$. Thể tích khối lăng trụ là:
Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là:
Cho hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác cân \(AB = AC = a;\widehat {BAC} = {120^0}\) và $AB'$ vuông góc với $\left( {A'B'C'} \right)$ . Mặt phẳng $\left( {AA'C'} \right)$ tạo với mặt phẳng $\left( {A'B'C'} \right)$ một góc \({30^0}\). Thể tích khối lăng trụ $ABC.A'B'C'$ là:
Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:
Mệnh đề nào dưới đây sai?
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình chữ nhật với \(AB = \sqrt 3 ,AD = \sqrt 7 \). Hai mặt bên $\left( {ABB'A'} \right)$ và $\left( {ADD'A'} \right)$ lần lượt tạo với đáy những góc \({45^0}\) và \({60^0}\). Tính thể tích khối hộp nếu biết cạnh bên bằng $1$.
Cho hình lăng trụ xiên $ABC.A’B’C’$ có đáy $ABC$ là tam giác đều với tâm $O$. Hình chiếu của $C’$ trên $(ABC) $ là $O$. Tính thể tích của lăng trụ biết rằng khoảng cách từ $O$ đến $CC’$ là $a$ và 2 mặt bên $(ACC’A’)$ và $(BCC’B’)$ hợp với nhau góc \({90^0}\).
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy $ABC$ là tam giác vuông tại $A$. \(AB = a;AC = a\sqrt 3 \);\(AA' = 2a\). Thể tích khối lăng trụ \(ABC.A'B'C'\) là:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy $ABC$ là tam giác vuông tại $B$, \(\widehat {ACB} = {60^0}\), cạnh \(BC = a\), đường chéo \(A'B\) tạo với mặt phẳng \(\left( {ABC} \right)\) một góc \({30^0}\). Thể tích khối lăng trụ \(ABC.A'B'C'\) là:
Đáy của hình lăng trụ đứng tam giác \(ABC.A'B'C'\) là tam giác đều cạnh \(a = 4\) và biết diện tích tam giác \(A'BC\) bằng $8$ . Tính thể tích khối lăng trụ?
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ