Một vòng quay trò chơi có bán kinh 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \(h\) (m) từ một cabin gắn tại điểm \(A\) của vòng quay đến mặt đất được tính bởi công thức \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\); với \(t\) là thời gian quay của vòng quay tính bằng phút \(\left( {t \ge 0} \right)\) (Xem hình vẽ)
a) Tính chu kì của hàm số \(h\left( t \right)\)
b) Khi \(t = 0\) (phút) thì khoảng cách của cabin đến mặt đất bằng bao nhiêu?
c) Khi quay một vòng lần thứ nhất tính từ thời điểm \(t = 0\) (phút), tại thời điểm nào của \(t\) thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao 86 m?
a) Chu kì của hàm số chính là thời gian bán kính vòng quay quay hết 1 vòng.
b) Thay \(t = 0\) vào hàm số \(h\left( t \right)\) để tính khoảng cách của cabin đến mặt đất.
c) Cabin ở vị trí cao nhất khi hàm số \(h\left( t \right)\) đạt giá trị lớn nhất. Sử dụng tính chất \( - 1 \le \sin x \le 1\) để tìm giá trị lớn nhất của hàm \(h\left( t \right)\).
a) Chu kì của hàm số chính là thời gian bán kính vòng quay quay hết 1 vòng. Do vòng quay trò chơi quay mỗi vòng hết 15 phút, chu kì của hàm số này là 15 phút.
b) Khoảng cách của cabin đến mặt đất tại thời điểm \(t = 0\) (phút) là:
\(h\left( 0 \right) = 57\sin \left( { - \frac{\pi }{2}} \right) + 57,5 = 0,5\) (m)
c) Do \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 1 \Rightarrow 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 57 \Rightarrow h\left( t \right) \le 114,5\)
Dấu bằng xảy ra \( \Leftrightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{2} + k2\pi \Leftrightarrow \frac{{2\pi }}{{15}}t = \pi + k2\pi \)
\( \Leftrightarrow t = \frac{{15}}{2} + 15k\) \(\left( {k \in \mathbb{Z}} \right)\)
Như vậy, kể từ thời điểm \(t = 0\) (phút), cabin đạt vị trí cao nhất tại thời điểm \(t = 7,5\) (phút)
Để tìm thời gian cabin đạt độ cao 86 m, ta cần phải tìm các giá trị của \(t\) để \(h\left( t \right) = 86\).
Ta có \(h\left( t \right) = 86 \Rightarrow 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86 \Rightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2}\)
Theo Bài 46, ta có \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.\)
Như vậy, kể từ thời điểm \(t = 0\) (phút), cabin đạt được chiều cao 86 m lần đầu tiên khi \(t = 5\) (phút)
Các bài tập cùng chuyên đề
Đồ thị của các hàm số \(y = \sin x\) và \(y = \cos x\) cắt nhau tại bao nhiêu điểm có hoành độ thuộc đoạn \(\left[ { - 2\pi ;\frac{{5\pi }}{2}} \right]\)?
A. 5 B. 6 C. 4 D. 7
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu được gọi tương ứng là huyết áp tâm thu và tâm trương. Chỉ số huyết áp của chúng ta được viết là huyết áp tâm thu/huyết áp tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử huyết áp của một người nào đó được mô hình hóa bởi hàm số
\(p\left( t \right) = 115 + 25\sin \left( {160\pi t} \right)\;\)
Trong đó p(t) là huyết áp tính theo đơn vị mmHg (milimet thủy ngân) và thời gian t tính theo phút.
a) Tìm chu kì của hàm số p(t)
b) Tìm số nhịp tim mỗi phút.
c) Tìm chỉ số huyết áp. So sánh huyết áp của người này với huyết áp bình thường.
Dùng đồ thị hàm số y = sinx, y = cosx để xác định số nghiệm của phương trình:
a) \(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\)
b) \(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\)
Vẽ đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.
Giá trị lớn nhất \(M\) của hàm số \(y = 1 - 2\left| {{\rm{cos}}3x} \right|\) là
Tập xác định \(D\) của hàm số \(y = \frac{1}{{\sqrt {1 - {\rm{sin}}x} }}\) là
Tập giá trị \(T\) của hàm số \(y = 5 - 3\sin x\) là
Tập xác định \(D\) của hàm số \(y = \sqrt {1 - {\rm{sin}}2x} - \sqrt {1 + {\rm{sin}}2x} \) là
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) \(y = 2 + \,3\,|\cos x\,|\);
b) \(y = 2\sqrt {\sin x} + 1\);
c)\(y = 3{\cos ^2}x + 4\cos 2x\);
d) \(y = \sin x + \cos x\).
Từ đồ thị hàm số \(y = \sin x\), hãy xác định các giá trị của x trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) sao cho:
a) \(\sin x = 0\);
b) \(\sin x > 0\).
Một con lắc lò xo dạo động điều hòa quanh vị trí cân bằng theo phương trình
ở đó \(y = 25\sin 4\pi t\), y được tính bằng centimet còn thời gian t được tính bằng giây.
a) Tìm chu kì dao động của con lắc lò xo.
b) Tìm tần số dao động của con lắc, tức là số lần dao động trong một giây.
c) Tìm khoảng cách giữa điểm cao nhất và điểm thấp nhất của con lắc.
Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:
a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\)
b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) \(y = \sin x - \cos x\);
b) \(y = \sin x + \sin \left( {\frac{\pi }{3} - x} \right)\);
c) \(y = {\sin ^4}x + {\cos ^4}x\)
d) \(y = \cos 2x + 2\cos x - 1\).
Tìm tập xác định ${\text{D}}$ của hàm số $y = \frac{{1 + \sin x}}{{\cos x - 1}}.$
Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm. Khoảng cách \(h\) (cm) từ chất điểm đến trục hoành được tính theo công thức \(h = \left| y \right|\), trong đó \(y = a\sin \left( {\frac{\pi }{5}t} \right)\), với \(t\) là thời gian chuyển động của chất điểm tính bằng giây \(\left( {t \ge 0} \right)\) và chất điểm bắt đầu chuyển động từ vị trí \(A\) (Xem hình dưới)
a) Chất điểm chuyển động một vòng hết bao nhiêu giây?
b) Tìm giá trị của \(a\).
c) Tìm thời điểm sao cho chất điểm ở vị trí có \(h = 2,5\) cm và nằm phía dưới trục hoành trong một vòng quay đầu tiên.
Tập xác định của hàm số \(y = \sqrt {1 + \cos 2x} \) là:
A. \(\emptyset \)
B. \(\mathbb{R}\)
C. \(\left[ { - 1; + \infty } \right)\)
D. \(\left[ { - \frac{1}{2}; + \infty } \right)\)
Huyết áp là áp lực máu cần thiết tác động lên thành động mạch nhằm đưa máu đi nuôi dưỡng các mô trong cơ thể. Nhờ lực co bóp của tim và sức cản của động mạch mà huyết áp được tạo ra. Giả sử huyết áp của một người thay đổi theo thời gian được cho bởi công thức: \(p\left( t \right) = 120 + 15\cos 150\pi t,\) trong p(t) là huyết áp tính theo đơn vị mmHg (milimét thủy ngân) và thời gian t tính theo đơn vị phút.
a) Chứng minh p(t) là một hàm số tuần hoàn.
b) Huyết áp cao nhất và huyết áp thấp nhất lần lượt được gọi là huyết áp tâm thu và huyết áp tâm trương. Tìm chỉ số huyết áp của người đó, biết rằng chỉ số huyết áp được viết là huyết áp tâm thu/ huyết áp tâm trương.
Tìm tập xác định của hàm số lượng giác \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\)
Tìm hoành độ các giao điểm của đồ thị các hàm số sau:
a) \(y = \sin \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \sin \left( {\frac{\pi }{4} - x} \right)\);
b) \(y = \cos \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \cos \left( {x + \frac{\pi }{6}} \right)\).
Tìm hoành độ các giao điểm của đồ thị hàm số \(y = \sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right)\) với trục hoành.
Tìm giá trị lớn nhất $M$ và giá trị nhỏ nhất $m$ của hàm số $y = \sqrt {7 - 3{{\cos }^2}x} .$
Hàm số $y = 5 + 4\sin 2x\cos 2x$ có tất cả bao nhiêu giá trị nguyên?
Tìm giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số \(y = 1 - 2\left| {{\text{cos}}3x} \right|\).
Với những giá trị nào của \(m\) thì phương trình \({\cos ^2}x - m = 2\) có nghiệm?
a) Cho biết \(\sin x = \frac{3}{4}.\) Tính giá trị của biểu thức \(P = {\sin ^2}2x.\)
b) Giải phương trình \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0.\)
Có bao nhiêu giá trị nguyên của $m$ để phương trình $\sin x - 2m = 1$ có nghiệm?
Tìm tập xác định $D$ của hàm số $y = \frac{{1 + \sin x}}{{\cos x - 1}}.$
Trong hình sau, khi được kéo ra khỏi vị trí cân bằng ở điểm $O$ và buông tay, lực đàn hồi của lò xo khiến vật $A$ gắn ở đầu của lò xo dao động quanh $O$. Toạ độ $s\left( {{\text{cm}}} \right)$ của $A$ trên trục $Ox$ vào thời điểm $t$ (giây) sau khi buông tay được xác định bởi công thức $s = 10\sin \left( {10t + \frac{\pi }{2}} \right)$. Vào các thời điểm nào thì $s = - 5\sqrt 3 \left( {{\text{cm}}} \right)$?