Đề bài

Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$ và mặt bên hợp với đáy một góc \({60^0}\). Thể tích khối chóp $S.ABC$ là:

  • A.

    \(\dfrac{{{a^3}\sqrt 3 }}{{12}}\)

  • B.

    \(\dfrac{{{a^3}\sqrt 2 }}{{24}}\)    

  • C.

    \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)

  • D.

    \(\dfrac{{{a^3}}}{{24}}\)

Phương pháp giải

Bước 1: Xác định góc giữa mặt bên và mặt đáy: là góc giữa hai đường thẳng nằm trong hai mặt phẳng đó và cùng vuông góc với giao tuyến.

Bước 2: Tính chiều cao \(SG\)

Bước 3: Tính diện tích đáy \({S_{ABC}}\).

Bước 4: Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

Lời giải của GV Loigiaihay.com

Bước 1:

Gọi $G$ là trọng tâm tam giác $ABC$. Vì chóp $S.ABC$ đều nên \(SG \bot \left( {ABC} \right)\)

Gọi $D$ là trung điểm của $BC$ ta có: \(AD \bot BC\)

Ta có: \(\left. \begin{array}{l}BC \bot AD\\BC \bot SG\,\,\left( {SG \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot SD\)

\(\left. \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SD \bot BC\\\left( {ABC} \right) \supset AD \bot BC\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SD;AD} \right)} = \widehat {SDA} = {60^0}\)

Bước 2:

Vì tam giác $ABC$ đều cạnh $a$ nên \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow DG = \dfrac{1}{3}AD = \dfrac{{a\sqrt 3 }}{6}\)

\(SG \bot \left( {ABC} \right) \Rightarrow SG \bot AD \Rightarrow \Delta SGD\) vuông tại $G$

\( \Rightarrow SG = GD.\tan 60 = \dfrac{{a\sqrt 3 }}{6}.\sqrt 3  = \dfrac{a}{2}\)

Bước 3:

Tam giác $ABC$ đều \( \Rightarrow {S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Bước 4:

\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SG.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:

Xem lời giải >>
Bài 2 :

Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:

Xem lời giải >>
Bài 3 :

Cho khối chóp tam giác \(S.ABC\), trên các cạnh \(SA,SB,SC\) lần lượt lấy các điểm \(A',B',C'\). Khi đó:

Xem lời giải >>
Bài 4 :

Đáy của hình chóp $S.ABCD$ là một hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy và có độ dài là \(a\). Thể tích khối tứ diện \(S.BCD\) bằng:

Xem lời giải >>
Bài 5 :

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:

Xem lời giải >>
Bài 6 :

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\). Biết \(AC = a\sqrt 2 \), cạnh \(SC\) tạo với đáy một góc \({60^0}\) và diện tích tứ giác \(ABCD\) là \(\dfrac{{3{a^2}}}{2}\). Gọi \(H\) là hình chiếu của \(A\) trên cạnh \(SC\). Tính thể tích khối chóp \(H.ABCD\).

Xem lời giải >>
Bài 7 :

Cho hình chóp \(S.ABC\) có \(SA \bot SB,SB \bot SC,SA \bot SC;SA = 2a,SB = b,SC = c\). Thể tích khối chóp là:

Xem lời giải >>
Bài 8 :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) vuông tại \(A\) và \(SB\) vuông góc với đáy. Biết \(SB = a,SC\) hợp với \(\left( {SAB} \right)\) một góc \({30^0}\) và \(\left( {SAC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({60^0}\). Thể tích khối chóp là:

Xem lời giải >>
Bài 9 :

Cho tứ diện \(ABCD\) có các cạnh \(AB,AC,AD\) đôi một vuông góc với nhau, \(AB = 6a,AC = 7a,AD = 4a\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,DB\). Thể tích \(V\) của tứ diện \(AMNP\) là:

Xem lời giải >>
Bài 10 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải >>
Bài 11 :

Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:

Xem lời giải >>
Bài 12 :

Cho hình chóp đều $S.ABCD$ có cạnh bên và cạnh đáy bằng $a$. Thể tích của khối chóp $S.ABCD$ là:

Xem lời giải >>
Bài 13 :

Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích khối chóp $S.ABC$?

Xem lời giải >>
Bài 14 :

Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải >>
Bài 15 :

Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem lời giải >>
Bài 16 :

Cho tứ diện đều $ABCD$ có cạnh bằng $8$. Ở bốn đỉnh tứ diện, nguời ta cắt đi các tứ diện đều bằng nhau có cạnh bằng $x$, biết khối đa diện tạo thành sau khi cắt có thể tích bằng \(\dfrac{3}{4}\) thể tích tứ diện $ABCD$. Giá trị của $x$ là:

Xem lời giải >>
Bài 17 :

Thể tích khối bát diện đều cạnh \(a\)  bằng:

Xem lời giải >>
Bài 18 :

Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải >>
Bài 19 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\) và \(SA = a\). Điểm $M$ thuộc cạnh $SA$ sao cho \(\dfrac{{SM}}{{SA}} = k\). Xác định $k$ sao cho mặt phẳng \(\left( {BMC} \right)\) chia khối chóp \(S.ABCD\) thành hai phần có thể tích bằng nhau.

Xem lời giải >>
Bài 20 :

Cho hình chóp \(S.ABC\) đáy \(ABC\) là tam giác vuông tại \(A,AB = a,AC = a\sqrt 3 \). Tam giác $SBC$ đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp $S.ABC$

Xem lời giải >>