Đề bài

Cho hàm số \(y = a{x^2} + bx + c\) có bảng biến thiên dưới đây. Đáp án nào sau đây là đúng?

 

A. \(y = {x^2} + 2x - 2.\)

B. \(y = {x^2} - 2x - 2.\)

C. \(y = {x^2}{\rm{ +  3}}x - 2.\)

D. \(y =  - {x^2} - 2x - 2.\)

Phương pháp giải

Tọa độ đỉnh của parabol \(y = a{x^2} + bx + c\) là \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\).

Lời giải của GV Loigiaihay.com

Từ BBT ta có \(a > 0\) nên loại đáp án D. Đỉnh \(I\left( {1; - 3} \right)\) nên \( - \frac{b}{{2{\rm{a}}}} = 1\)

Đáp án A. \(y = {x^2} + 2x - 2\) có \(a = 1,b = 2 \Rightarrow \frac{{ - b}}{{2a}} =  - 1\) (Loại)

Đáp án B. \(y = {x^2} - 2x - 2\) có \(a = 1,b =  - 2 \Rightarrow \frac{{ - b}}{{2a}} = 1\) (TM)

Đáp án C. \(y = {x^2} + 3x - 2\) có \(a = 1,b = 3 \Rightarrow \frac{{ - b}}{{2a}} =  - \frac{3}{2}\) (Loại)

 Chọn B