Cho hình bình hành ABCD có \(AB = 8cm\), \(AD = 12cm\) , góc \(\angle ABC\) nhọn và diện tích tam giác ABC bằng \(27{\mkern 1mu} c{m^2}\) Khi đó \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\) bằng
A. \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = {\rm{\;}} - \frac{{5\sqrt 7 }}{{16}}\)
B. \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{{5\sqrt 7 }}{{16}}\)
C. \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{{2\sqrt 7 }}{{16}}\)
D. \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = {\rm{\;}} - \frac{{2\sqrt 7 }}{{16}}\)
Áp dụng công thức diện tích tam giác \({S_{ABC}} = \frac{1}{2}AB.BC.\sin B\)\( \Rightarrow \cos B\)
Và tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\)\( = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\)\( = \cos BAD\)
\(\begin{array}{*{20}{l}}{{S_{\Delta ABC}} = \frac{1}{2}AB.BC.\sin ABC = \frac{1}{2}.8.12.\sin ABC = 27}\\{ \Rightarrow \sin ABC = \frac{9}{{16}}}\\{ \Rightarrow \cos ABC = \sqrt {1 - {{\left( {\frac{9}{{16}}} \right)}^2}} }\end{array}\)
\( \Rightarrow \cos ABC = \frac{{5\sqrt 7 }}{{16}}\) ( vì \(\angle ABC\)nhọn )
\(\begin{array}{*{20}{l}}{ \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)}\\{ = \cos BAD{\mkern 1mu} = \cos \left( {{{180}^^\circ }{\rm{\;}} - \angle ABC} \right)}\\{ = {\rm{\;}} - \cos ABC = {\rm{\;}} - \frac{{5\sqrt 7 }}{{16}}}\end{array}\)
Chọn A