Đề bài

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe honda Future Fi với chi phí mua vào một chiếc là 27 triệu và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bản mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

Phương pháp giải

- Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; \(0 \le x \le 4\).

- Lập phương trình tính lợi nhuận khi bán một chiếc xe.

- Tính số xe mà doanh nghiệp bán được trong một năm.

- Lập hàm số biểu thị lợi nhuận doanh nghiệp thu được trong một năm.

- Xét sự biến thiên hàm số trên \([0;4]\) và tìm giá trị lớn nhất của nó.

- Kết luận bài toán.

Lời giải của GV Loigiaihay.com

Gọi x (triệu đồng) là số tiền mà doanh nghiệp A dự định giảm giá; \(0 \le x \le 4\).

Khi đó:

Lợi nhuận thu được khi bán một chiếc xe là \(31 - x - 27 = 4 - x\) (triệu đồng).

Số xe mà doanh nghiệp sẽ bán được trong một năm là: \(600 + 200x\) (chiếc).

Lợi nhuận mà doanh nghiệp thu được trong một năm là:

\(f\left( x \right) = \left( {4 - x} \right)\left( {600 + 200x} \right) = {\rm{ \;}} - 200{x^2} + 200x + 2400.\)

Xét hàm số \(f\left( x \right) = {\rm{ \;}} - 200{x^2} + 200x + 2400\) trên đoạn \([0;4]\) có bảng biến thiên sau:

 

Suy ra \(\mathop {\max }\limits_{[0;4]} f\left( x \right) = 2450 \Leftrightarrow x = \frac{1}{2}.\)

Vậy giá mới của chiếc xe là 31 - 0,5 = 30,5 triệu đồng thì lợi nhuận thu được là cao nhất.