Đề bài

Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \(\sqrt {2{x^2} - 2} {\rm{\;}} = x + 1\). Khi đó \({x_1} + {x_2}\) bằng

A. \(0\)

B. \(2\)

C. \(1\)

D. \( - 1\)

Phương pháp giải

Giải phương trình \(\sqrt A {\rm{\;}} = B \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{B \ge 0}\\{A = {B^2}}\end{array}} \right.\)

Lời giải của GV Loigiaihay.com

\(\sqrt {2{x^2} - 2}  = x + 1 \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\2{x^2} - 2 = {\left( {x + 1} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\2{x^2} - 2 = {x^2} + 2x + 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\{x^2} - 2x - 3 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\\left[ \begin{array}{l}x = 3\\x =  - 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x =  - 1\end{array} \right.\)

Khi đó \({x_1} + {x_2} = 3 + \left( { - 1} \right) = 2\).

Chọn B