a) Trong một đợt quyên góp để ủng hộ học sinh vùng khó khăn. 40 học sinh lớp 11 của trường THPT X thực hiện kế hoạch quyên góp như sau: Ngày đầu tiên mỗi bạn quyên góp 2000 đồng, từ ngày thứ hai trở đi mỗi bạn quyên góp hơn ngày liền trước là 500 đồng. Hỏi sau bao nhiêu ngày thì số tiền quyên góp được là 9800000 đồng.
b) Đầu mùa thu hoạch sầu riêng, ông A đã bán cho người thứ nhất nửa số sầu riêng thu hoạch được và tặng thêm 1 quả, bán cho người thứ hai nửa số sầu riêng còn lại và tặng thêm 1 quả. Ông cứ tiếp tục cách bán như trên thì đến người thứ bảy số sầu riêng của ông được bán hết. Tính số sầu riêng mà ông A thu hoạch được.
a) Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\).
Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Khi đó : \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hoặc \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2} = n{u_1} + \frac{{n\left( {n - 1} \right)}}{2}d\) .
b) Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\).
Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Khi đó : \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}},q \ne 1\).
a) Số tiền mỗi học sinh quyên góp theo từng ngày lập thành một cấp số cộng với số hạng đầu \({u_1} = 2000\) và công sai \(d = 500\)
Do đó tổng số tiền mà 40 học sinh quyên góp được sau \(n\) ngày là \(40.\frac{n}{2}\left[ {2.2000 + \left( {n - 1} \right)500} \right] = 10000{n^2} + 70000n\)
Theo giả thiết ta có: \(10000{n^2} + 70000n = 9800000 \Leftrightarrow {n^2} + 7n - 980 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 28\\n = - 35\;\left( L \right)\end{array} \right.\)
Vậy số ngày cần quyên góp là 28 ngày
b) Gọi \(x\) là số quả sầu riêng mà ông A thu hoạch được
Khi đó số quả sầu riêng mà người thứ nhất mua và được tặng là: \(\frac{1}{2}x + 1 = \frac{{x + 2}}{2}\)
Số quả sầu riêng mà người thứ hai mua và được tặng là: \(\frac{1}{2}\left( {x - \frac{{x + 2}}{2}} \right) + 1 = \frac{{x + 2}}{{{2^2}}}\)
...
Số quả sầu riêng mà người thứ bảy mua và được tặng là: \(\frac{{x + 2}}{{{2^7}}}\)
Khi đó: \(\frac{{x + 2}}{2} + \frac{{x + 2}}{{{2^2}}} + ... + \frac{{x + 2}}{{{2^7}}} = x \Leftrightarrow \left( {x + 2} \right)\left( {\frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^7}}}} \right) = x\)
\( \Leftrightarrow \left( {x + 2} \right)\frac{1}{2}.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^7}}}{{1 - \frac{1}{2}}} = x \Leftrightarrow \frac{{127}}{{128}}\left( {x + 2} \right) = x \Leftrightarrow x = 254\)