Công ty X trong đợt hỗ trợ người dân cần thuê xe để chở ít nhất 120 người và 6,5 tấn hàng. Nơi thuê có 2 loại xe là A và B, loại xe A có 8 chiếc và xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 3 triệu đồng, loại xe B thuê với giá 4 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 10 người và 2 tấn hàng. Mỗi chiếc xe loại B có thể chở tối đa 20 người và 0,5 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí là thấp nhất?
Để tìm giá trị nhỏ nhất của biểu thức F ta làm như sau:
Bước 1: Xác định miền nghiệm của hệ bất phương trình trên, xác định các đỉnh của đa giác.
Bước 2: Tính giá trị biểu thức F tại các đỉnh của đa giác đó.
Bước 3: So sánh các giá trị thu được của F, giá trị nhỏ nhất của F là giá trị cần tìm.
Gọi x (xe) và y (xe) lần lượt là số xe loại B và loại A cần phải thuê, điều kiện: \(0 \le x \le 9,x \in \mathbb{N},0 \le y \le 8,y \in \mathbb{N}\).
Số tiền cần bỏ ra để thuê xe là: \(f\left( {x;y} \right) = 4x + 3y\) (triệu đồng).
Ta có x xe loại B và y xe loại A sẽ chở được \(20x + 10y\) (người) và \(0,5x + 2y\) (tấn hàng).
Theo đề bài ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 9\\0 \le y \le 8\\20x + 10y \ge 120\\0,5x + 2y \ge 6,5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 9\\0 \le y \le 8\\2x + y \ge 12\\x + 4y \ge 13\end{array} \right.\)
Miền nghiệm của hệ bất phương trình là tứ giác ABCD (kể cả biên) với A (5;2), B (9;1), C (9;8); D (2; 8) như hình vẽ:
Ta có: \(f\left( {5;2} \right) = 26;f\left( {9;1} \right) = 39;f\left( {9;8} \right) = 60;f\left( {2;8} \right) = 32\) nên f (x; y) nhỏ nhất khi \(x = 5;y = 2\).
Vậy để chi phí là thấp nhất thì cần 5 xe loại B và 2 xe loại A.