Đề bài

Nếu tam giác ABC có \(\frac{{\sin B}}{{\sin C}} = 2\cos A\) thì:

A. Tam giác ABC vuông tại A

B. Tam giác ABC cân tại A

C. Tam giác ABC cân tại B

D. Tam giác ABC cân tại C

Lời giải của GV Loigiaihay.com

Ta có: \(\frac{{\sin B}}{{\sin C}} = 2\cos A \Leftrightarrow \sin B = 2\cos A\sin C\)

Mà \(\sin B = \sin ({180^ \circ } - B) = \sin (A + C) = \sin A\cos C + \sin C\cos A\)

\(\begin{array}{l} \Rightarrow \sin A\cos C + \sin C\cos A = 2\cos A\sin C\\ \Leftrightarrow \sin A\cos C = \cos A\sin C\;(*)\end{array}\)

+ Nếu \(\widehat A = {90^ \circ } \Leftrightarrow \cos A = 0 \Leftrightarrow \sin {90^ \circ }.\cos C = 0 \Leftrightarrow \widehat C = {90^ \circ }\) (Vô lí)

+ Nếu \(\widehat A,\widehat C \ne {90^ \circ }\) thì \((*) \Leftrightarrow \frac{{\sin A}}{{\cos A}} = \frac{{\sin C}}{{\cos C}}\) hay \(\tan A = \tan C\)

Suy ra \(\widehat A = \widehat C\) do \({0^ \circ } < \widehat A,\widehat C < {180^ \circ }\)

Vậy tam giác ABC cân tại B.

Chọn C