Xét điểm B nằm giữa hai điểm A và H. Giả sử có điểm D sao cho DH vuông góc với AB và ^DAH=15o,^DBH=30oˆDAH=15o,ˆDBH=30o. Chứng minh rằng HD=AB2HD=AB2.
+ Tam giác HDB vuông tại H nên HDBD=sin^HBDHDBD=sinˆHBD.
+ Tính được góc ADB của tam giác ABD, từ đó suy ra tam giác ABD cân tại D nên BD=ABBD=AB.
+ Do đó, BD=AB=2HDBD=AB=2HD, suy ra điều phải chứng minh.
Tam giác HDB vuông tại H nên HDBD=sin^HBD=sin30o=12HDBD=sinˆHBD=sin30o=12 nên BD=2HDBD=2HD.
Tam giác ABD có ^ABD=180o−^DBH=150o,ˆABD=180o−ˆDBH=150o, ^BAD=15oˆBAD=15o nên ^ADB=180o−^ABD−ˆA=15oˆADB=180o−ˆABD−ˆA=15o.
Do đó tam giác ABD cân tại B. Suy ra BD=ABBD=AB.
Suy ra BD=AB=2HDBD=AB=2HD nên HD=AB2HD=AB2.
Các bài tập cùng chuyên đề
Tính số đo góc nhọn αα biết 10sin2α+6cos2α=810sin2α+6cos2α=8.
Cho tam giác ABC vuông cân tại A và AB=AC=aAB=AC=a (H.4.7a).
a) Hãy tính BC và các tỉ số ABBCABBC và ACBC.ACBC. Từ đó suy ra sin450;cos450.sin450;cos450.
b) Hãy tính các tỉ số ABACABAC và ACAB.ACAB. Từ đó suy ra tan450;cot450.tan450;cot450.
Xét tam giác đều ABC có cạnh bằng 2a.
a) Tính đường cao AH của tam giác ABC (H.4.7b) .
b) Tính sin300;cos300;sin600;cos600.sin300;cos300;sin600;cos600.
c) Tính tan300;cot300;tan600;cot600.tan300;cot300;tan600;cot600.
Cho tam giác ABC vuông tại A có ˆC=450ˆC=450 và AB=c.AB=c. Tính BC và AC theo c.
Cho tam giác vuông có 1 góc nhọn 600600 và cạnh kề với góc 600600 bằng 3 cm. Hãy tính cạnh đối của góc này.
Cho tam giác vuông có một góc nhọn bằng 300300 và cạnh đối với góc này bằng 5 cm. Tính độ dài cạnh huyền của tam giác.
Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và √3.√3. Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác trang 69) .
Giá trị tan300tan300 bằng
A. √3√3
B. √32√32
C. 1√31√3
D. 1
Tính giá trị biểu thức sau:
a) A=sin30o.cos30ocot45oA=sin30o.cos30ocot45o
b) B=tan30ocos45o.cos60oB=tan30ocos45o.cos60o
Tính giá trị biểu thức:
a) A = 4−sin245o+2cos260o−3cot345o4−sin245o+2cos260o−3cot345o
b) B = tan45o.cos30o.cot30otan45o.cos30o.cot30o
c) C = sin15o+sin75o−cos15o−cos75o+sin30osin15o+sin75o−cos15o−cos75o+sin30o
Sử dụng bảng tỉ số lượng giác của các góc nhọn đặc biệt, tính giá trị của biểu thức:
sin60∘−cos60∘.tan60∘sin60∘−cos60∘.tan60∘.
Trong Hình 4.6, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B.
Trong Hình 4.7, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B và góc A1A1.
Trong Hình 4.9, hãy tính các tỉ số PNPQPNPQ và PNPMPNPM, từ đó tìm PQPMPQPM.
Góc nhọn αα có cotα=√3cotα=√3. Số đo của góc αα là
A. 30o30o.
B. 60o60o.
C. 45o45o.
D. 75o75o.
Số 1√31√3 là giá trị của
Dùng bảng lượng giác, tính góc nhọn αα biết rằng sinα=√3cosαsinα=√3cosα.
Cho tam giác ABC vuông tại A có AC=5√3cmAC=5√3cm, AB+BC=15cmAB+BC=15cm. Tính tanB2tanB2.
Tính giá trị các biểu thức sau:
a) P=tan60o.cot30o6sin30oP=tan60o.cot30o6sin30o
b) Q=sin45o.cos45osin30o.cos60oQ=sin45o.cos45osin30o.cos60o
Hai trụ điện cùng chiều cao được dựng thẳng đứng ở hai bên lề đối diện một đại lộ rộng 80 m (AC = 80 m). Từ một điểm M trên mặt đường giữa hai trụ người ta nhìn thấy đỉnh hai trụ điện với các góc nâng lần lượt là 60o và 30o. Tính chiều cao của trụ điện và khoảng cách từ điểm M đến gốc mỗi trụ điện.
Sử dụng bảng tỉ số lượng giác của các góc nhọn đặc biệt, tính giá trị của mỗi biểu thức sau:
a) 2sin30∘−2cos60∘+tan45∘2sin30∘−2cos60∘+tan45∘
b) sin45∘+cot60∘.cos30∘sin45∘+cot60∘.cos30∘
a) Tính các góc của tam giác vuông có một góc nhọn có tang bằng √33√33.
b) Một hình chữ nhật có kích thước 3 và √3√3. Tính các góc tạo bởi đường chéo và cạnh của hình chữ nhật đó.
Xét tam giác ABC vuông tại B, có ˆA=30oˆA=30o. Tia Bt sao cho ^CBt=30oˆCBt=30o cắt tia AC ở D, D nằm giữa A và C. Chứng minh rằng khoảng cách từ D đến đường thẳng BC bằng AB4AB4.
Chọn câu sai:
Cho góc nhọn αα có sinα=12sinα=12 thì
A. 1tanα=√31tanα=√3.
B. 1sinα=21sinα=2.
C. tan2α=13tan2α=13.
D. cos2α=14cos2α=14.
Tìm độ dài dây cáp mắc giữa hai cọc ở vị trí C, D trên hai bên bờ vực như trong Hình 4.21 (làm tròn đến mét).
Giá trị của biểu thức B = tan 45o .cos 30o. cot 30o là
A. √33√33
B. √62√62
C. √32√32
D. 3232
Cho tam giác vuông có một góc nhọn 60o60o và cạnh kề với góc 60o60o bằng 3cm. Hãy tính cạnh đối của góc này.
Cho tam giác vuông có một góc nhọn 30o30o và cạnh đối với góc này bằng 5cm. Tính độ dài cạnh huyền của tam giác
Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và √3√3. Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác của các góc đặc biệt).
Giá trị tan30otan30o bằng
A. √3√3.
B. √32√32.
C. 1√31√3.
D. 1.