Đề bài

Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ 3 trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây trồng được là:

A. 79 hàng

B. 78 hàng

C. 80 hàng

D. 77 hàng

Phương pháp giải

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\).

Khi đó: \({S_n} = \frac{{\left( {{u_1} + {u_n}} \right)n}}{2} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2}\).

Lời giải của GV Loigiaihay.com

Gọi số cây ở hàng thứ n là \({u_n}\). Ta có: \({u_1} = 1,{u_2} = 2,{u_3} = 3,...,\) và \(S = {u_1} + {u_2} + {u_3} + ... + {u_n} = 3003\).

Nhận thấy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có số hạng đầu \({u_1} = 1,\) công sai \(d = 1\).

Do đó, \({S_n} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2} = 3003 \Leftrightarrow \frac{{n\left[ {2.1 + \left( {n - 1} \right).1} \right]}}{2} = 3003\).

\( \Leftrightarrow n\left( {n + 1} \right) = 6006 \Leftrightarrow {n^2} + n - 6006 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 77\\n =  - 78\left( L \right)\end{array} \right. \Leftrightarrow n = 77\).

Vậy số hàng cây trồng được là 77 hàng.

Đáp án D