Đề bài

Giá trị của biểu thức \(\frac{1}{{\tan {{368}^\circ }}} + \frac{{2\sin {{2550}^\circ }\cos ( - {{188}^\circ })}}{{2\cos {{638}^\circ } + \cos {{98}^\circ }}}\) là

A. \( - 1\)

B. 1

C. \(\frac{1}{2}\)

D. 0

Phương pháp giải

Sử dụng công thức: \(\sin \left( {\alpha  + k{{.360}^0}} \right) = \sin \alpha ,\cos \left( {\alpha  + {{180}^0}} \right) =  - \cos \alpha \left( {k \in \mathbb{Z}} \right),\cos \left( { - \alpha } \right) = \cos \alpha \).

Lời giải của GV Loigiaihay.com

\(\frac{1}{{\tan {{368}^\circ }}} + \frac{{2\sin {{2550}^\circ }\cos ( - {{188}^\circ })}}{{2\cos {{638}^\circ } + \cos {{98}^\circ }}} = \frac{1}{{\tan \left( {{{360}^0} + {8^0}} \right)}} + \frac{{2\sin \left( {{{7.360}^0} + {{30}^0}} \right)\cos \left( {{{180}^0} + {8^0}} \right)}}{{2\cos \left( {{{2.360}^0} - {{82}^0}} \right) + \cos \left( {{{90}^0} + {8^0}} \right)}}\)

\( = \frac{1}{{\tan {8^0}}} + \frac{{2\sin {{30}^0}\left( { - \cos {8^0}} \right)}}{{2\cos \left( {{8^0} - {{90}^0}} \right) - \sin {8^0}}}\)\( = \frac{1}{{\tan {8^0}}} + \frac{{2.\frac{1}{2}\left( { - \cos {8^0}} \right)}}{{2\cos \left( {{{90}^0} - {8^0}} \right) - \sin {8^0}}}\)

\( = \frac{1}{{\tan {8^0}}} - \frac{{\cos {8^0}}}{{2\sin {8^0} - \sin {8^0}}} = \frac{1}{{\tan {8^0}}} - \frac{{\cos {8^0}}}{{\sin {8^0}}} = \frac{1}{{\tan {8^0}}} - \frac{1}{{\tan {8^0}}} = 0\)

Đáp án D