a) Giải phương trình \(\cot \left( {4x - \frac{\pi }{6}} \right) = \sqrt 3 \).
b) Giải phương trình \(\sin 3x - \cos 2x = 0\).
c) Giải phương trình \(\frac{{{\mathop{\rm s}\nolimits} i{\rm{n2}}x + 2\cos x - \sin x - 1}}{{\tan x + \sqrt 3 }} = 0\).
a) Ta có: \(\cot x = m\,\)\( \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
b) Áp dụng các công thức lượng giác của các góc liên quan đặc biệt để đưa về phương trình lượng giác cơ bản.
c) Sử dụng công thức nhân đôi để làm xuất hiện nhân tử chung: \(\sin 2x = 2\sin x\cos x\).
a) Ta có : \(\cot \left( {4x - \frac{\pi }{6}} \right) = \sqrt 3 \)\( \Leftrightarrow \cot \left( {4x - \frac{\pi }{6}} \right) = \cot \frac{\pi }{6}\)\( \Leftrightarrow 4x - \frac{\pi }{6} = \frac{\pi }{6} + k\pi \)\( \Leftrightarrow x = \frac{\pi }{{12}} + k\frac{\pi }{4},k \in \mathbb{Z}\).
b) Ta có: \(\sin 3x - \cos 2x = 0\)\( \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - 2x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x = \frac{\pi }{2} + 2x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{2} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\).
c) Điều kiện:\(\left\{ \begin{array}{l}\tan x \ne - \sqrt 3 \\\cos x \ne 0\end{array} \right.\)
Với điều kiện trên, phương trình\( \Leftrightarrow {\mathop{\rm s}\nolimits} i{\rm{n2}}x + 2\cos x - \sin x - 1 = 0\)
\( \Leftrightarrow 2\sin x\cos x + 2\cos x - (\sin x + 1) = 0\)
\( \Leftrightarrow 2\cos x\left( {\sin x + 1} \right) - (\sin x + 1) = 0\)
\( \Leftrightarrow \left( {\sin x + 1} \right)(2\cos x - 1) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\sin x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)
So với điều kiện, nghiệm của phương trình là \(x = \frac{\pi }{3} + k2\pi \,\,\,\,(k \in \mathbb{Z})\).