Phương trình \(\cos x = 0\) có nghiệm là:
A. \(x = \frac{\pi }{2} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
B. \(x = k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
C. \(x = \frac{\pi }{2} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
D. \(x = k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
Giải phương trình \(\cos \alpha = m\).
- Trường hợp \(\left| m \right| > 1\) phương trình vô nghiệm.
- Trường hợp \(\left| m \right| \le 1\), khi đó: Tồn tại duy nhất một số thực \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\cos \alpha = m\).
Ta có : \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\).
Ta có \(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).
Đáp án A