Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung ?
A. \(y = \sin \,x\cos 2x\)
B. \(y = {\sin ^3}x.\cos \left( {x - \frac{\pi }{2}} \right)\)
C. \(y = \frac{{\tan \,x}}{{{{\tan }^2}x + 1}}\)
D. \(y = \cos x{\sin ^3}x\)
Bước 1: Tìm tập xác định \(D\) của hàm số, khi đó:
- Nếu \(D\) là tập đối xứng (tức \(\forall x \in D \Rightarrow - x \in D\)), thì ta thực hiện tiếp bước 2.
- Nếu \(D\) không phải tập đối xứng (tức là \(\exists x \in D\) mà \( - x \notin D\)) thì ta kết luận hàm số không chẵn không lẻ.
Bước 2: Xác định \(f\left( { - x} \right)\):
- Nếu \(f\left( { - x} \right) = f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số chẵn.
- Nếu \(f\left( { - x} \right) = - f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số lẻ.
- Nếu không thỏa mãn một trong hai điều kiện trên thì kết luận hàm số không chẵn không lẻ.
Nhận xét: Hàm số chẵn có đồ thị đối xứng qua trục tung.
Xét hàm số\(y = f\left( x \right) = {\sin ^3}x.\cos \left( {x - \frac{\pi }{2}} \right) = {\sin ^3}x.\sin x = {\sin ^4}x\).
Tập xác định \(D = \mathbb{R}\). Do đó \(\forall x \in {\rm{D}} \Rightarrow - x \in {\rm{D}}{\rm{.}}\)
Ta có : \(f\left( { - x} \right) = {\left( {\sin \left( { - x} \right)} \right)^4} = {\sin ^4}x = f\left( x \right)\) là hàm số chẵn\( \Rightarrow \) Chọn B.
Đáp án B