Đề bài
Một cấp số nhân có số hạng đầu \({u_1} = 3\), công bội \(q = 2\). Biết \({S_n} = 765\). Tìm \(n\)?
A. \(n = 8\)
B. \(n = 9\)
C. \(n = 6\)
D. \(n = 7\)
Phương pháp giải
Cho một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\).
Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Khi đó : \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}},q \ne 1\).
Lời giải của GV Loigiaihay.com
Áp dụng công thức của cấp số nhân ta có: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3.\left( {1 - {2^n}} \right)}}{{1 - 2}} = 765\)\( \Leftrightarrow n = 8\).
Đáp án A