Đề bài

Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\) bằng:

A. \(\frac{\pi }{9}.\)

B. \( - \frac{\pi }{6}.\)

C. \(\frac{\pi }{6}.\)

D. \( - \frac{\pi }{9}.\)

Phương pháp giải

Áp dụng các công thức giải phương trình lượng giác cơ bản rồi kết hợp điều kiện đã cho để chọn nghiệm thỏa mãn.

Lời giải của GV Loigiaihay.com

Ta có \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{{3\pi }}{4}} \right) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{3\pi }}{4} = \frac{\pi }{3} + k2\pi \\3x - \frac{{3\pi }}{4} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.\).\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{13\pi }}{{12}} + k2\pi \\3x = \frac{{17\pi }}{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in Z} \right).\)

TH1. Với

TH2. Với

So sánh bốn nghiệm ta được nghiệm âm lớn nhất là \(x = - \frac{{7\pi }}{{36}}\) và nghiệm dương nhỏ nhất là \(x = \frac{{13\pi }}{{36}}.\) Khi đó tổng hai nghiệm bằng \(\frac{{13\pi }}{{36}} - \frac{{7\pi }}{{36}} = \frac{\pi }{6}.\)

Đáp án C