Đề bài

Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

A. \(1;\,2;\,3;\,4;\,5\)

B. \(1;\,3;\,6;\,9;\,12\)

C. \(2;\,4;\,6;\,8;\,10\)

D. \(2;\,2;\,2;\,2;\,2\)

Phương pháp giải

Chứng minh \(\forall n \ge 1,{u_{n + 1}} = {u_n}.q\) trong đó \(q\) là một số không đổi.

Nếu \({u_n} \ne 0\) với mọi \(n \in {\mathbb{N}^*}\) thì ta lập tỉ số \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\).

\( * \) T là hằng số thì \(({u_n})\) là cấp số nhân có công bội \(q = T\).

\( * \) T phụ thuộc vào n thì \(({u_n})\) không là cấp số nhân.

Lời giải của GV Loigiaihay.com

Ta thấy ở đáp án D có \({u_1} = {u_2} = {u_3} = {u_4} = {u_5} = 2\) nên đây là cấp số nhân với công bội \(q = 1\).

Đáp án D