Ghi lại tốc độ bóng trong 200 lần giao bóng của một vận động viên môn quần vợt cho kết quả như bảng bên.
Tốc độ (km/h)
\([150;155)\)
\([155;160)\)
\([160;165)\)
\([165;170)\)
\([170;175)\)
\([175;180)\)
Số lần
18
28
35
43
41
35
Tốc độ (km/h) |
\([150;155)\) |
\([155;160)\) |
\([160;165)\) |
\([165;170)\) |
\([170;175)\) |
\([175;180)\) |
Số lần |
18 |
28 |
35 |
43 |
41 |
35 |
a)Tính trung vị của mẫu số liệu ghép nhóm này.
b) Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba của mẫu số liệu ghép nhóm này.
a) Để tính trung vị của mẫu số liệu ghép nhóm, ta làm như sau:
Bước 1. Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\).
Bước 2. Trung vị là \({M_e} = {a_p} + \frac{{\frac{n}{2} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right)\),
trong đó \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\). Với \(p = 1\), ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
b) Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_1}\), giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó,
\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)
trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\). Giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó,
\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)
trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\).
Nhận xét. Ta cũng có thể xác định nhóm chứa tứ phân vi thứ \(r\) nhờ tính chất: có khoảng \(\left( {\frac{{r \cdot n}}{4}} \right)\) giá trị nhỏ hơn tứ phân vị này.
a) Cỡ mẫu là: \(n = 18 + 28 + 35 + 43 + 43 + 41 + 35 = 200\).
Gọi \({x_1},{x_2} \ldots {x_{200}}\) là tốc độ giao bóng của 200 lần và giả sử dãy này được sắp xếp theo thứ tự tăng dần. Khi đó trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\).
Do hai giá trị \({x_{100}},{x_{101}}\) thuộc nhóm [165;170) nên nhóm này chứa trung vị.
Suy ra, \(p = 4;{a_4} = 165;{m_4} = 43;{m_1} + {m_2} + {m_3} = 18 + 28 + 35 = 81;{a_5} - {a_4} = 5\) và ta có:
\({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}} \times 5 = 167,21\).
b) Cỡ mẫu: \(n = 200\).
Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{50}} + {x_{51}}}}{2}\). Do \({x_{50}};{x_{51}}\) đều thuộc nhóm [160;165) nên tứ phân vị thứ nhất thuộc nhóm [160;165). Do đó, \(p = 3;{a_3} = 160;{m_3} = 35;{m_1} + {m_2} = 18 + 28 = 46;{a_4} - {a_3} = 5\) và ta có:
\({Q_1} = 160 + \frac{{\frac{{200}}{4} - 46}}{{35}} \times 5 = 160,57\).
Tứ phân vị thứ ba \({Q_3}\) là \(\frac{{{x_{150}} + {x_{151}}}}{2}\). Do \({x_{150}},{x_{151}}\) đều thuộc nhóm [170;175) nên tứ phân vị thứ ba thuộc nhóm [170;175). Do đó,\(p = 5;{a_5} = 170;{m_5} = 41;{m_1} + {m_2} + {m_3} + {m_4} = 18 + 28 + 35 + 43 = 124;{a_6} - {a_5} = 5\)
và ta có:
\({Q_3} = 170 + \frac{{\frac{{600}}{4} - 124}}{{41}} \times 5 = 173,17\).