Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất : \(y = 4{\cos ^2}x - 4\cos x + 3\)  với \(x \in \left[ {\frac{\pi }{3};\,\frac{{5\pi }}{6}} \right]\).

Phương pháp giải

B1: Đặt ẩn phụ và tìm điều kiện của ẩn

B2: Lập bảng biến thiên, khảo sát hàm số rồi kết luận

Lời giải của GV Loigiaihay.com

Đặt \(t = \cos x\).

Với \(\frac{\pi }{3} \le x \le \frac{{5\pi }}{6}\) ta có \(\frac{{ - \sqrt 3 }}{2} \le t \le \frac{1}{2}\) .

Khi đó ta có \(y = f\left( t \right) = 4{t^2} - 4t + 3\) , \(\frac{{ - \sqrt 3 }}{2} \le t \le \frac{1}{2}\).

Ta có bảng biến thiên:

 

Từ bảng biến thiên ta có:

Giá trị lớn nhất của hàm số đã cho trên \(\left[ {\frac{\pi }{3};\,\frac{{5\pi }}{6}} \right]\) là \(6 + 2\sqrt 3 \).

Giá trị nhỏ nhất của hàm số đã cho trên \(\left[ {\frac{\pi }{3};\,\frac{{5\pi }}{6}} \right]\) là \(2\).