Tìm x biết:
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
Dựa vào các hằng đẳng thức đáng nhớ, phân tích đa thức thành nhân tử để tìm x.
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
\(\begin{array}{l}(x - 3 - x)(x - 3 + x) = 0\\ - 3.(2x - 3) = 0\\2x - 3 = 0\\x = \frac{3}{2}\end{array}\)
Vậy \(x = \frac{3}{2}\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
\(\begin{array}{l}{x^2}(x - 5) - 9(x - 5) = 0\\({x^2} - 9)(x - 5) = 0\\(x - 3)(x + 3)(x - 5) = 0\\\left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 5 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 3\\x = - 3\\x = 5\end{array} \right.\end{array}\)
Vậy x =3, x = -3 hoặc x = 5.
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
\(\begin{array}{l}\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left[ {\left( {2x - 1} \right) - 4} \right] = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 1 - 2} \right)\left( {2x - 1 + 2} \right) = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 3} \right)\left( {2x + 1} \right) = 0\\\left( {5x - 3 - 2x + 3} \right)\left( {2x + 1} \right) = 0\\3x\left( {2x + 1} \right) = 0\\\left[ \begin{array}{l}x = 0\\2x + 1 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x = - \frac{1}{2}\end{array} \right.\end{array}\)
Vậy x = 0 hoặc x = \( - \frac{1}{2}\).