Đề bài
Cho hình chóp S.ABCD đều có thể tích bằng 200cm3 , chiều cao SO bằng 12cm. Độ dài cạnh bên của hình chóp tứ giác đó là :
A. 12cm.
B. 13cm.
C. 11cm.
D. 16cm.
Phương pháp giải
Áp dụng công thức tính thể tích hình chóp tứ giác và định lí Pythagore để tính độ dài cạnh bên của hình chóp.
Lời giải của GV Loigiaihay.com
Ta có: \(V = \frac{1}{3}SO.{S_{ABCD}}\)
\(\begin{array}{l} \Leftrightarrow 200 = \frac{1}{3}.12.{S_{ABCD}}\\ \Rightarrow {S_{ABCD}} = \frac{{200}}{{\frac{1}{3}.12}} = \frac{{200}}{4} = 50\\ \Leftrightarrow B{C^2} = 50\end{array}\)
Tam giác BHC vuông cân nên HB2 + HC2 = BC2 hay 2HC2 = BC2 hay 2HC2 = 50
Suy ra HC2 = 25
SC2 = SH2 + HC2 = 122 + 252 = 169 = 132.
Vậy độ dài cạnh bên là 13cm.
Đáp án B.