Đề bài
Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:
-
A.
\(5\sqrt 2 \)
-
B.
$5$
-
C.
\(\sqrt 2 \)
-
D.
\(3\sqrt 2 \)
Phương pháp giải
Giải phương trình phức từ đó tính tổng.
Lời giải của GV Loigiaihay.com
\(2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{z^2} = 2\\{z^2} = - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = \pm \sqrt 2 \\z = \pm i\dfrac{{\sqrt 2 }}{2}\end{array} \right.\)\(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2} = 2 + 2 + \dfrac{1}{2} + \dfrac{1}{2} = 5\)
Đáp án : B