Đề bài

Tìm đa thức V sao cho

\(V + 4{y^3} - 2x{y^2} + {x^2}y - 9 = 4{y^3} - 3\)

Phương pháp giải

Chuyển vế, tìm V.

Lời giải của GV Loigiaihay.com

Ta xét

\(V + 4{y^3} - 2x{y^2} + {x^2}y - 9 = 4{y^3} - 3\)

\( V = 4{y^3} - 3 - 4{y^3} + 2x{y^2} - {x^2}y + 9\)

\( V = \left( {4{y^3} - 4{y^3}} \right) + \left( { - 3 + 9} \right) + 2x{y^2} - {x^2}y\)

\(  V = 6 + 2x{y^2} - {x^2}y\).

Vậy \(V = 6 + 2x{y^2} - {x^2}y\).

Các bài tập cùng chuyên đề

Bài 1 :

Thực hiện phép trừ hai đa thức A và B bằng cách lập hiệu

\(A - B = \left( {5{x^2}y + 5x - 3} \right) - \left( {xy - 4{x^2}y + 5x - 1} \right)\), bỏ dấu ngoặc rồi thu gọn đa thức nhận được.

Xem lời giải >>
Bài 2 :

Tìm độ dài cạnh còn thiếu của tam giác ở Hình 7, biết rằng tam giác có chu vi bằng \(7x + 5y\).

Xem lời giải >>
Bài 3 :

Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)

a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc

b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau.

c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .

Xem lời giải >>
Bài 4 :

Viết một đa thức biểu diễn diện tích của phần được tô màu trong Hình 1.13.

Xem lời giải >>
Bài 5 :

Cho A và B là hai đa thức. Biết rằng \(A = 4{x^3}{y^2} - 2{x^2}{y^3} + x{y^2} - 2,5\) và \(A + B = 3{x^2}{y^3} + 0,5\) .

Khi đó ta có

A. \(B = - 4{x^3}{y^2} + 5{x^2}{y^3} - x{y^2} + 3\) .

B. \(B = 4{x^3}{y^2} + {x^2}{y^3} + x{y^2} - 2\) .

C. \(B = - 4{x^3}{y^2} + {x^2}{y^3} - x{y^2} + 2\) .

D. \(B = 4{x^3}{y^2} - 5{x^2}{y^3} + x{y^2} - 3\) .

Xem lời giải >>
Bài 6 :

Tìm đa thức M biết \(M - 5{x^2} + xyz = xy + 2{x^2} - 3xyz + 5\) 

Xem lời giải >>
Bài 7 :

Biết \(M + 5{x^2} - 2xy = 6{x^2} + 10xy - {y^2}\). Đa thức \(M\) là

Xem lời giải >>