Số phức \(z = a + bi\) có phần thực là:
-
A.
\(a\)
-
B.
\(b\)
-
C.
\(i\)
-
D.
\(z\)
Phần thực của số phức \(z\) là \(a\).
Đáp án : A
Các bài tập cùng chuyên đề
Số phức \(z = \sqrt 2 i - 1\) có phần thực là:
Hai số phức \(z = a + bi,z' = a + b'i\) bằng nhau nếu:
Số phức liên hợp của số phức \(z = a - bi\) là:
Chọn mệnh đề đúng:
Gọi \(M,N\) lần lượt là các điểm biểu diễn số phức \(z = a + bi\) và \(z' = a' + b'i\). Chọn câu đúng:
Cho hai số phức \(z = a + bi,z' = a' + b'i\). Chọn công thức đúng:
Cho số phức \(z = a + bi\) và \(\overline z \) là số phức liên hợp của \(z\). Chọn kết luận đúng:
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
Cho số phức \(z = a + bi(ab \ne 0)\). Tìm phần thực của số phức \({\rm{w}} = \dfrac{1}{{{z^2}}}\).
Cho số phức $z = 3-2i$. Tìm phần thực và phần ảo của số phức \(\overline z \)
Cho hai số phức ${z_1} = 1 + i$ và ${z_2} = 2-3i$. Tính môđun của số phức ${z_1} + {z_2}$ .
Cho số phức $z = 1 + \sqrt {3}i $. Khi đó
Cho số phức \(z = \dfrac{{7 - 11i}}{{2 - i}}\) . Tìm phần thực và phần ảo của \(\overline z \) .
Cho $2$ số phức,\({z_1} = 1 + 3i,{\overline z _2} = 4 + 2i\). Tính môđun của số phức ${z_2} - 2{z_1}$
Cho số phức $z = 2 + 3i$. Tìm số phức \(w = \left( {3 + 2i} \right)z + 2\overline z \)
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
Cho số phức $z = 1 + i + {i^2} + {i^3} + ... + {i^9}$. Khi đó:
Trong các số phức \({z_1} = - 2i,\,\,{z_2} = 2 - i,\,\,{z_3} = 5i,\,\,{z_4} = 4\) có bao nhiêu số thuần ảo?