Đề bài

Cho tam giác ABC

a)  Xác định các điểm M, N, P thỏa mãn: \(\overrightarrow {MB}  = \frac{1}{2}\overrightarrow {BC} ,\overrightarrow {AN}  = 3\overrightarrow {NB} ,\overrightarrow {CP}  = \overrightarrow {PA} \)

b) Biểu thị mỗi vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \) theo hai vectơ \(\overrightarrow {BC} ,\overrightarrow {BA} \)

c) Chứng minh ba điểm M, N, P thẳng hàng

Phương pháp giải

a)  Xác định hướng và tỉ số độ dài

\(\overrightarrow {MB}  = k.\overrightarrow {BC}  \Rightarrow \overrightarrow {MB} \) và \(\overrightarrow {BC} \) cùng hướng; tỉ số độ dài \(\frac{{BC}}{{MB}} = k\)

b)  Phân tích  \(\overrightarrow {MN}\) theo hai vecto \(\overrightarrow {MB}, \overrightarrow {NB}\)

c)  \(M,N,P\) thẳng hàng \( \Leftrightarrow \overrightarrow {MN}  = k.\overrightarrow {MP} \) \(\left( k \in {\mathbb Z}^* \right)\)

Lời giải của GV Loigiaihay.com

a)      Ta có:

+) \(\overrightarrow {MB}  = \dfrac{1}{2}\overrightarrow {BC}  \Rightarrow \overrightarrow {MB} \) và \(\overrightarrow {BC} \) cùng hướng; tỉ số độ dài \(\dfrac{{BC}}{{MB}} = 2\)

\( \Rightarrow M\) nằm ngoài đoạn thẳng BC sao cho \(MB = \dfrac{1}{2}BC\)

+) \({\overrightarrow {AN}  = 3\overrightarrow {NB}  \Rightarrow \overrightarrow {AB}  + \overrightarrow {BN}  = 3\overrightarrow {NB}  \Rightarrow 4\overrightarrow {NB}  = \overrightarrow {AB}  \Leftrightarrow \overrightarrow {NB}  = \dfrac{1}{4}\overrightarrow {AB} }\)

\( \Rightarrow N\) thuộc đoạn thẳng AB và \(NB=\dfrac{{1}}{{4}} AB\)

+) \(\overrightarrow {CP}  = \overrightarrow {PA}  \Leftrightarrow \overrightarrow {PC}  + \overrightarrow {PA}  = \overrightarrow 0 \)

\( \Rightarrow P\) là trung điểm của CA

 

b) \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} \)

\(\begin{array}{l}\overrightarrow {MP}  = \overrightarrow {MC}  + \overrightarrow {CP}  = \overrightarrow {MC}  + \frac{1}{2}\overrightarrow {CA}  \\= \frac{3}{2}\overrightarrow {BC}  + \frac{1}{2}\left( {\overrightarrow {BA}  - \overrightarrow {BC} } \right)\\ = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \end{array}\)

c) Ta có:

\(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} ;\) \(\overrightarrow {MP}  = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \)

\( \Rightarrow \overrightarrow {MP}  = 2\overrightarrow {MN} \)

Vậy \(M,N,P\) thẳng hàng

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường thẳng d đi qua hai điểm phân biệt A và B. Những khẳng định nào sau đây là đúng?

a) Điểm M thuộc đường thẳng d khi và chỉ khi tồn tại số t để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \)

c) Điểm M thuộc tia đối của tia AB khi và chỉ khi tồn tại số \(t \le 0\) để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

Xem lời giải >>
Bài 2 :

\( - \;\overrightarrow a \) và \( - 1\;\overrightarrow a \) có mối quan hệ gì?

Xem lời giải >>
Bài 3 :

Trên một trục số, gọi O, A, M, N tương ứng biểu thị các số \(0;\;1;\;\sqrt 2 ;\; - \sqrt 2 \). Hãy nêu mối quan hệ về hướng và độ dài của mỗi vecto \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) với vecto \(\overrightarrow a  = \overrightarrow {OA} \). Viết đẳng thức thể hiện mối quan hệ giữa hai vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \).

Xem lời giải >>
Bài 4 :

\(1\;\overrightarrow a \) và \(\overrightarrow a \) có bằng nhau hay không?

Xem lời giải >>
Bài 5 :

Cho vecto \(\overrightarrow {AB}  = \overrightarrow a \). Hãy xác định điểm C sao cho \(\overrightarrow {BC}  = \overrightarrow a \)

a) Tìm mối quan hệ giữa \(\overrightarrow {AB} \) và \(\overrightarrow a  + \overrightarrow a \)

b) Vecto \(\overrightarrow a  + \overrightarrow a \) có mối quan hệ như thế nào về hướng và độ dài đối với vecto \(\overrightarrow a \)

Xem lời giải >>
Bài 6 :

Luyện tập – vận dụng 1 trang 89 Sách giáo khoa Toán 10 – Cánh Diều

Cho tam giác ABC. Hai đường trung tuyến AM và BN cắt nhau tại G.

Tìm các số a, b biết: \(\overrightarrow {AG}  = a.\overrightarrow {AM} ;\overrightarrow {GN}  = b.\overrightarrow {GB} \)

Xem lời giải >>
Bài 7 :

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào sau đây là đúng?

A. \(\overrightarrow {MN}  = 2\overrightarrow {PQ} \)

B. \(\overrightarrow {MN}  = 2\overrightarrow {NP} \)

C. \(\overrightarrow {MN}  =  - 2\overrightarrow {PQ} \)

D. \(\overrightarrow {MQ}  =  - 2\overrightarrow {NP} \)

Xem lời giải >>
Bài 8 :

Cho đoạn thẳng AB = 6 cm.

a) Xác định điểm C thỏa mãn \(\overrightarrow {AC}  = \frac{1}{2}\overrightarrow {AB} \)

b) Xác định điểm D thỏa mãn \(\overrightarrow {AD}  =  - \frac{1}{2}\overrightarrow {AB} \)

Xem lời giải >>
Bài 9 :

Cho vectơ \(\overrightarrow a \). Hãy xác định độ dài và hướng của hai vectơ \(\overrightarrow a  + \overrightarrow a ,\left( { - \overrightarrow a } \right) + \left( { - \overrightarrow a } \right)\): (Hình 1)

Xem lời giải >>