Đề bài

Biểu diễn miền nghiệm của hệ bất phương trình sau trên mặt phẳng tọa độ Oxy:

\(\left\{ \begin{array}{l}x - 2y > 0\\x + 3y < 3\end{array} \right.\)

Phương pháp giải

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy

Lời giải của GV Loigiaihay.com

Vẽ đường thẳng \(d:x - 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)

Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \(1 - 2.0 =  1> 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d\), chứa điểm A

(miền không gạch chéo trên hình)

Vẽ đường thẳng \(d':x + 3y = 3\) đi qua hai điểm \(A'(0;1)\) và \(B'\left( {3;0} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 3.0 = 0 < 3\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.

Các bài tập cùng chuyên đề

Bài 1 :

Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:  \(\left\{ \begin{array}{l}x \ge 0\\y > 0\\x + y \le 100\\2x + y < 120\end{array} \right.\)

Xem lời giải >>
Bài 2 :

Cho đường thẳng d: x+y=150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.

a) Xác định miền nghiệm \({D_1},{D_2},{D_3}\) của các bất phương trình tương ứng \(x \ge 0;y \ge 0\) và \(x + y \le 150\).

b) Miền tam giác OAB (H.2.5) có phải là giao điểm của các miền \({D_1},{D_2}\) và \({D_3}\) hay không?

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\)

Xem lời giải >>
Bài 3 :

c) \(\left\{ \begin{array}{l}x \ge 0\\x + y > 5\\x - y > 0\end{array} \right.\)

Xem lời giải >>
Bài 4 :

b) \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 4\end{array} \right.\)

Xem lời giải >>
Bài 5 :

a) \(\left\{ \begin{array}{l}y - x <  - 1\\x > 0\\y < 0\end{array} \right.\)

Xem lời giải >>
Bài 6 :

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y <  - 3\\2y \ge  - 4\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ đã cho?

A. (0;0)

B. (-2;1)

C. (3;-1)

D. (-3;1)

Xem lời giải >>
Bài 7 :

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + y < 1\\2x - y \ge 3\end{array} \right.\) trên mặt phẳng tọa độ

Xem lời giải >>
Bài 8 :

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y - 2x \le 2\\y \le 4\\x \le 5\\x + y \ge  - 1\end{array} \right.\) trên mặt phẳng tọa độ.

Từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) =  - x - y\) với \(\left( {x;y} \right)\) thỏa mãn hệ trên.

Xem lời giải >>
Bài 9 :

Biểu diễn miền nghiệm của hệ bất phương trình sau: \(\left\{ \begin{array}{l}3x - y >  - 3\\ - 2x + 3y < 6\\2x + y >  - 4\end{array} \right.\)

Xem lời giải >>
Bài 10 :

Cho hệ bất phương trình sau: \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le 16\\2x + y \ge  - 4\end{array} \right.\)

a) Trong cùng mặt phẳng toạ độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình

trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.

b) Tìm miền nghiệm của hệ bất phương trình đã cho.

Xem lời giải >>
Bài 11 :

Biểu diễn miền nghiệm của hệ bất phương trình:

a) \(\left\{ \begin{array}{l}x + 2y <  - 4\\y \ge x + 5\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x - 2y > 8\\x \ge 0\\y \le 0\end{array} \right.\)

Xem lời giải >>
Bài 12 :

Biểu diễn miền nghiệm của hệ bất phương trình:

a) \(\left\{ \begin{array}{l}2x - 3y < 6\\2x + y < 2\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 10y \le 20\\x - y \le 4\\x \ge  - 2\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x - 2y \le 5\\x + y \ge 2\\x \ge 0\\y \le 3\end{array} \right.\)

Xem lời giải >>
Bài 13 :

Miền không bị gạch ở mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây?

 

a) \(\left\{ \begin{array}{l}x + y \le 2\\x \ge  - 3\\y \ge  - 1\end{array} \right.\)

b) \(\left\{ \begin{array}{l}y \le x\\x \le 0\\y \ge  - 3\end{array} \right.\)

c) \(\left\{ \begin{array}{l}y \ge  - x + 1\\x \le 2\\y \le 1\end{array} \right.\)

Xem lời giải >>
Bài 14 :

Biểu diễn miền nghiệm của hệ bất phương trình: \(\left\{ \begin{array}{l}x + y \le 8\\2x + 3y \le 18\\x \ge 0\\y \ge 0\end{array} \right.\)

Xem lời giải >>
Bài 15 :

Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 3 \le 0\\ - 2x + y + 3 \ge 0\end{array} \right.\)

Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho?

Xem lời giải >>
Bài 16 :

Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau:

a) \(\left\{ \begin{array}{l}x + y - 3 \ge 0\\x \ge 0\\y \ge 0\end{array} \right.\)

b) \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y >  - 2\\y - x < 3\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x \ge 1\\x \le 4\\x + y - 5 \le 0\\y \ge 0\end{array} \right.\)

Xem lời giải >>
Bài 17 :

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 3y - 2 \ge 0}\\{2x + y + 1 \le 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình đã cho?

Xem lời giải >>
Bài 18 :

Phần không tô đậm (không kể biên) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?

Xem lời giải >>
Bài 19 :

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + y \ge 9}\\{x \ge y - 3}\\{2y \ge 8 - x}\\{y \le 6}\end{array}} \right.\) chứa điểm nào trong các điểm sau đây?

Xem lời giải >>
Bài 20 :

Phần không tô đậm (không kể biên) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?

Xem lời giải >>
Bài 21 :

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\) chứa điểm nào trong các điểm sau đây?

Xem lời giải >>
Bài 22 :

Miền tam giác (kể cả ba cạnh AB, BC, CA) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?

Xem lời giải >>
Bài 23 :

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:

a) \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge  - 1}\\{y \ge  - 2}\end{array}} \right.\)

Xem lời giải >>
Bài 24 :

Điểm nào sau đây thuộc miền nghiệm của bất phương trình \(2x + 5y \le 10?\)

A. \(\left( {5;2} \right).\)

B. \(\left( { - 1;4} \right).\)

C. \(\left( {2;1} \right).\)

D. \(\left( { - 5;6} \right).\)

Xem lời giải >>
Bài 25 :

Cặp số nào dưới đây là nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 2}\\{x - 2y \ge 4}\\{x > 0}\end{array}\,\,?} \right.\)

A. \(\left( { - 1;2} \right).\)

B. \(\left( { - 2; - 4} \right).\)

C. \(\left( {0;1} \right).\)

D. \(\left( {2;4} \right).\)

Xem lời giải >>
Bài 26 :

Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - x + y \le 2}\\{x - 2y \ge 1}\\{y \le 0}\end{array}\,\,?} \right.\)

A. \(\left( { - 3;2} \right).\)

B. \(\left( {0;1} \right).\)

C. \(\left( {4; - 1} \right).\)

D. \(\left( { - 2;2} \right).\)

Xem lời giải >>
Bài 27 :

Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác \(ABC\) (miền không bị gạch)?

A. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \ge 1}\\{x \ge 0}\end{array}.} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \le 1}\\{x \ge 0}\end{array}} \right..\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge  - 1}\\{x + y \ge  - 1}\\{x \ge 0}\end{array}.} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge  - 1}\\{x + y \ge  - 1}\\{y \ge 0}\end{array}.} \right.\)

Xem lời giải >>
Bài 28 :

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{x + y \le 0}\\{y \ge 0}\end{array}} \right.\) là:

A. Một nửa mặt phẳng.

B. Miền tam giác.

C. Miền tứ giác.

D. Miền ngũ giác.

Xem lời giải >>
Bài 29 :

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{ - 3 \le y \le 3}\\{ - 3 \le x \le 3}\end{array}} \right.\) là:

A. Miền lục giác.

B. Miền tam giác.

C. Miền tứ giác.

D. Miền ngũ giác.

Xem lời giải >>
Bài 30 :

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 10}\\{ - 3 \le y \le 3}\\{ - 3 \le x \le 3}\end{array}} \right.\) là:

A. Miền lục giác.

B. Miền tam giác.

C. Miền tứ giác.

D. Miền ngũ giác.

Xem lời giải >>