Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ”, phát biểu lại các định lí sau:
a) Nếu \(B \subset A\) thì \(A \cup B = A\) (A, B là hai tập hợp);
b) Nếu hình bình hành ABCD có hai đường chéo vuông góc với nhau thì nó là hình thoi.
Mệnh đề trên có dạng “Nếu P thì Q” là mệnh đề kéo theo, có thể phát biểu là:
P là điều kiện đủ để có Q
Q là điều kiện cần để có P.
a) Mệnh đề trên có dạng “Nếu P thì Q” là mệnh đề kéo theo \(P \Rightarrow Q\), với:
P: “\(B \subset A\)” và Q: “\(A \cup B = A\)”. Có thể phát biểu dưới dạng:
\(B \subset A\) là điều kiện đủ để có \(A \cup B = A\)
\(A \cup B = A\) là điều kiện cần để có \(B \subset A\)
b) Mệnh đề trên có dạng “Nếu P thì Q” là mệnh đề kéo theo \(P \Rightarrow Q\), với:
P: “Hình bình hành ABCD có hai đường chéo vuông góc với nhau” và Q: “ABCD là hình thoi”. Có thể phát biểu dưới dạng:
Hình bình hành ABCD có hai đường chéo vuông góc với nhau là điều kiện đủ để ABCD là hình thoi.
ABCD là hình thoi là điều kiện cần để có ABCD là hình bình hành có hai đường chéo vuông góc với nhau.
Các bài tập cùng chuyên đề
Cho hai câu sau:
P: “Tam giác ABC là tam giác vuông tại A”;
Q: “Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.
Hãy phát biểu câu ghép có dạng “Nếu P thì Q”.
Cặp từ quan hệ nào sau đây phù hợp với vị trí bị che khuất trong câu ghép ở hình bên?
A. Nếu … thì …
B. Tuy … nhưng …
Cho định lí: “Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau”. Mệnh đề nào sau đây là đúng?
A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau.
B. Hai tam giác bằng nhau là điều kiện cần và đủ để diện tích của chúng bằng nhau
C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau
D. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau
Hãy phát biểu một định lí toán học ở dạng mệnh đề kéo theo \(P \Rightarrow Q\).
Xét hai mệnh đề:
P: “Số tự nhiên n chia hết cho 6”; Q: “Số tự nhiên n chia hết cho 3”.
Xét mệnh đề R: “Nếu số tự nhiên n chia hết cho 6 thì số tự nhiên n chia hết cho 3”.
Mệnh đề R có dạng phát biểu như thế nào?
Cho tứ giác ABCD. Lập mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của mệnh đề đó với:
a) P: “Tứ giác ABCD là hình chữ nhật”, Q: “Tứ giác ABCD là hình bình hành”
b) P: “Tứ giác ABCD là hình thoi”, Q: “Tứ giác ABCD là hình vuông”
Xét hai mệnh đề:
P: “Hai tam giác ABC và A’B’C’ bằng nhau”.
Q: “Hai tam giác ABC và A’B’C’ có diện tích bằng nhau”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\).
b) Mệnh đề \(P \Rightarrow Q\) có phải là một định lí không? Nếu có, sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí này theo cách khác nhau.
Xét hai mệnh đề sau:
(1) Nếu ABC là tam giác đều thì nó là tam giác cân
(2) Nếu 2a – 4 > 0 thì a > 2
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Mỗi mệnh đề trên đều có dạng “Nếu P thì Q”. Chỉ ra P và Q ứng với mỗi mệnh đề đó.
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”.
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).
Phát biểu dưới dạng “điều kiện cần” đối với mệnh đề sau:
a) Hai góc đối đỉnh thì bằng nhau.
b) Số tự nhiên có tổng các chữ số của nó chia hết cho 3 thì chia hết cho 3.
Ta có thể phát biểu lại mệnh đề:
“Mỗi hình thoi là một hình bình hành”.
Thành mệnh đề kéo theo:
“Nếu một tứ giác là hình thoi thì nó là hình bình hành”.
Hãy phát biểu lại mỗi mệnh đề sau thành mệnh đề kéo theo:
a) Hình chữ nhật có hai đường chéo bằng nhau.
b) Tổng của hai số hữu tỉ là một số hữu tỉ.
c) Lập phương của một số âm là một số âm.
Sử dụng các thuật ngữ “điều kiện cần”, “điều kiện đủ”, “điều kiện cần và đủ” và cặp mệnh đề P, Q sau đây để thành lập một mệnh đề đúng.
a) P: “\(a = b\)”, Q: “\({a^2} = {b^2}\)” (a, b là hai số thực nào đó).
b) P: “Tứ giác ABCD có hai đường chéo bằng nhau”.
Q: “Tứ giác ABCD là hình thang cân”.
c) P: “Tam giác ABC có hai góc bằng \(45^\circ \)”, Q: “Tam giác ABC vuông cân”.
Biết rằng \(P \Rightarrow Q\) là mệnh đề đúng. Mệnh đề nào sau đây đúng?
A. P là điều kiện cần để có Q
B. P là điều cần đủ để có Q
C. Q là điều kiện cần và đủ để có P
D. Q là điều kiện đủ để có P
Cho số thực x. Mệnh đề nào sau đây là điều kiện đủ của \(x >1\)?
A. \(x > 0\)
B. \(x \ge 1\)
C. \(x < 1\)
D. \(x \ge 2\)