Biết cách phân tích, đánh giá độ phức tạp thuật toán là kĩ năng quan trọng của người thiết kế thuật toán và chương trình. Các quy tắc đơn giản tính độ phức tạp thời gian mang lại cho em điều gì khi đánh giá thuật toán?
Dựa vào kiến thức trong bài kết hợp kiến thức thực tế của bản thân để trả lời câu hỏi.
Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất
Các bài tập cùng chuyên đề
Xác định độ phức tạp của thuật toán sắp xếp nổi bọt sau:
def BubbleSort(A):
n = len(A)
for i in range(n-1):
for j in range(n-1-i):
if A[j] > A[j+1]:
A[j],A[j+1] = A[j+1]1,A[j]
Cho biết hàm sau sẽ trả về giá trị là bao nhiêu? Xác định độ phức tạp thời gian O- lớn của chương trình.
def Mystery(n):
r=0
for i in range(n-1):
for j in range(i+1,n):
for k in range(1,j):
r=r+1
return r
Giả sử rằng mỗi phép tính đơn được thực hiện trong micro giây (1 us = một phần triệu giây). Hãy xác định giá trị lớn nhất của n trong các thuật toán tìm kiếm tuần tự, sắp xếp chèn và sắp xếp chọn nếu thời gian thực thi các thuật toán là 1 giây, 1 phút và 1 giờ?
Hãy cho biết hàm sau thực hiện công việc gì? Xác định độ phức tạp thời gian của thuật toán.
def func(A):
n=len(A)
for i in range(n-1):
for j in range(i+1,n):
if A[j] > A[j]:
A[j],A[j] = A[j],A[i]