Đề bài

Xét tính liên tục của hàm số \(y = \sqrt {{x^2} - 4} \).

Phương pháp giải

Để tính xét tính liên tục của hàm số, ta tìm những khoảng xác định của hàm số đó.

Lời giải của GV Loigiaihay.com

ĐKXĐ: \({x^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 2\end{array} \right.\)

Vậy hàm số có TXĐ: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).

Hàm số \(y = \sqrt {{x^2} - 4} \) là hàm số căn thức nên nó liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \sqrt {{x^2} - 4}  = \sqrt {{2^2} - 4}  = 0 = f\left( 2 \right)\)

\(\mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {2^ + }} \sqrt {{x^2} - 4}  = \sqrt {{{\left( { - 2} \right)}^2} - 4}  = 0 = f\left( { - 2} \right)\)

Vậy hàm số \(y = \sqrt {{x^2} - 4} \) liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right]\) và \(\left[ {2; + \infty } \right)\).

Các bài tập cùng chuyên đề

Bài 1 :

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

Xem lời giải >>
Bài 2 :

Cho hai hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) =  - x + 1\)

a) Xét tính liên tục của hai hàm số trên tại \(x = 1\)

b) Tính \(L = \mathop {{\rm{lim}}}\limits_{x \to 1} \;\left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với \(f\left( 1 \right) + g\left( 1 \right)\).

Xem lời giải >>
Bài 3 :

Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1}} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\).

Xem lời giải >>
Bài 4 :

Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1}} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\).

Xem lời giải >>
Bài 5 :

Xét tính liên tục của hàm số \(f\left( x \right) = \sin x + \cos x\) trên \(\mathbb{R}.\)

Xem lời giải >>
Bài 6 :

Cho hai hàm số \(f\left( x \right) = {x^3} + x\) và \(g\left( x \right) = {x^2} + 1\,\,\left( {x \in \mathbb{R}} \right).\) Hãy cho biết:

a) Hai hàm số \(f\left( x \right),g\left( x \right)\) có liên tục tại \(x = 2\) hay không.

b) Các hàm số \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) có liên tục tại \(x = 2\) hay không.

Xem lời giải >>
Bài 7 :

Hàm số \(f\left( x \right) = \frac{{x + 2}}{{x - 8}}\) có liên tục trên mỗi khoảng \(\left( { - \infty ;8} \right),\left( {8; + \infty } \right)\) hay không?

Xem lời giải >>
Bài 8 :

Quan sát đồ thị các hàm số: \(y = {x^2} - 4x + 3\) (Hình 14a);

\(y = \frac{{x + 1}}{{x - 1}}\,\,\left( {x \ne 1} \right)\) (Hình 14b);

\(y = \tan x\) (Hình 14c).

Và nêu nhận xét về tính liên tục của mỗi hàm số đó trên từng khoảng của tập xác định.

Xem lời giải >>
Bài 9 :

Bạn Nam cho rằng: “Nếu hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0},\) còn hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0},\) thì hàm số \(y = f\left( x \right) + g\left( x \right)\) không liên tục tại \({x_0}\)”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.

Xem lời giải >>
Bài 10 :

Một hãng taxi đưa ra giá cước \(T\left( x \right)\) (đồng) khi đi quãng đường \(x\) (km) cho loại xe 4 chỗ như sau:

\(T\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{10000}&{khi\,\,0 < x \le 0,7}\\{ - 10000 + \left( {x - 0,7} \right).14000}&{khi{\rm{ }}0,7 < x \le 20}\\{280200 + \left( {x--20} \right).12000}&{khi{\rm{ }}x > 20}\end{array}} \right.\)

Xét tính liên tục của hàm số \(T\left( x \right)\).

Xem lời giải >>
Bài 11 :

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 2x}}{x}}&{khi\,\,x \ne 0}\\a&{khi\,\,x = 0}\end{array}} \right.\).

Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 12 :

Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).

a) Tìm tập xác định của mỗi hàm số đã cho.

b) Mỗi hàm số trên liên tục trên những khoảng nào? Giải thích.

Xem lời giải >>
Bài 13 :

Trong mặt phẳng toạ độ \(Oxy\), cho đường tròn \(\left( C \right)\) tâm \(O\), bán kính bằng 1. Một đường thẳng \(d\) thay đổi, luôn vuông góc với trục hoành, cắt trục hoành tại điểm \(M\) có hoành độ \(x\left( { - 1 < x < 1} \right)\) và cắt đường tròn \(\left( C \right)\) tại các điểm \(N\) và \(P\) (xem Hình 6).

a) Viết biểu thức \(S\left( x \right)\) biểu thị diện tích của tam giác \(ONP\).

b) Hàm số \(y = S\left( x \right)\) có liên tục trên \(\left( { - 1;1} \right)\) không? Giải thích.

c) Tìm các giới hạn \(\mathop {\lim }\limits_{x \to {1^ - }} S\left( x \right)\) và \(\mathop {\lim }\limits_{x \to  - {1^ + }} S\left( x \right)\).

Xem lời giải >>
Bài 14 :

Xét tính liên tục của các hàm số:

a) \(y = \sqrt {{x^2} + 1}  + 3 - x\);                                       

b) \(y = \frac{{{x^2} - 1}}{x}.\cos x\).

Xem lời giải >>
Bài 15 :

Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).

Hàm số \(y = f\left( x \right) + g\left( x \right)\) có liên tục tại \(x = 2\) không? Giải thích.

Xem lời giải >>
Bài 16 :

Cho hàm số \(f\left( x \right) = 2x - \sin x,g\left( x \right) = \sqrt {x - 1} \).

Xét tính liên tục hàm số \(y = f\left( x \right).g\left( x \right)\) và \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\).

Xem lời giải >>
Bài 17 :

Cho hai hàm số \(f\left( x \right) = x - 1\) và \(g\left( x \right) = {x^2} - 3x + 2\). Xét tính liên tục của các hàm số:

a) \(y = f\left( x \right).g\left( x \right)\);

b) \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\);

c) \(y = \frac{1}{{\sqrt {f\left( x \right) + g\left( x \right)} }}\).

Xem lời giải >>