Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.
a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.
b) Chứng minh rằng \(IK//BC\)
c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC)
Định lý Talet đảo
Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Đường trung bình của tam giác:
Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Dấu hiệu nhận biết hình bình hành:
Hình có một cặp cạnh đối song song và bằng nhau là hình bình hành.
a) Tam giác ABC có M, N là trung điểm của AB, BC nên MN // AC (1)
Tam giác ACD có P, Q là trung điểm của CD, DA nên PQ // AC (2)
Tam giác SMN có I, J là trung điểm của SM, SN nên IJ // MN (3)
Tam giác SPQ có L, K là trung điểm của SQ, SP nên LK // PQ (4)
Từ (1), (2), (3), (4) suy ra IJ // LK
Suy ra I, J, K, L đồng phẳng
Ta có:\(\frac{{MN}}{{AC}} = \frac{{QP}}{{AC}} = \frac{1}{2}\)
\(\frac{{{\rm{IJ}}}}{{MN}} = \frac{{LK}}{{PQ}} = \frac{1}{2}\)
Suy ra IJ = LK mà IJ // LK
Suy ra IJKL là hình bình hành
b) Ta có M, P lần lượt là trung điểm của AB, CD
Suy ra: MP // BC (1)
Tam giác SMP có: I, K là trung điểm của SM, SP
Suy ra: IK // MP (2)
Từ (1) và (2) suy ra: IK // BC
c) Ta có: J là giao điểm của hai mặt phẳng (IJKL) và (SBC)
mà IK // BC
Từ J kẻ Jm // BC
Suy ra Jm là giao tuyến của hai mặt phẳng (IJKL) và (SBC)
Các bài tập cùng chuyên đề
Một bề kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26. Giải thích tại sao đường mép nước AB song song với cạnh CD của bề nước
Trong Ví dụ 4, hãy xác định giao tuyến của hai mặt phẳng (SAD) và (SBC)
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến c. Một mặt phẳng (R) cắt (P) và (Q) lần lượt theo giao tuyến a và b khác c
a) Nếu hai đường thẳng a và c cắt nhau tại M thì đường thẳng b có đi qua M hay không (H.4.23)? Giải thích vì sao.
b) Nếu hai đường thẳng a và c song song với nhau thì hai đường thẳng b và c có song song với nhau hay không (H.4.24)? Giải thích vì sao.
Trong Ví dụ 1, chứng minh rằng 4 điểm C, D, E, F đồng phẳng và tứ giác CDFE là hình bình hành.
Quan sát lớp học và tìm hai đường thẳng song song với mép trên của bảng. Hai đường thẳng đó có song song với nhau hay không?
Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M và d.
a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?
b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?
Trong không gian, cho ba đường thẳng a, b, c. Những mệnh đề nào sau đây là đúng?
a) Nếu a và b không cắt nhau thì a và b song song.
b) Nếu b và c chéo nhau thì b và c không cùng thuộc một mặt phẳng.
c) Nếu a và b cùng song song với c thì a song song với b.
d) Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD (H.4.27). Chứng minh rằng tứ giác MNPQ là hình bình hành,
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng tứ giác MNCD là hình thang.
Trong mặt phẳng, hãy nêu vị trí tương đối của hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba.
Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAD) và (SBC).
Cho ba mặt phẳng (P), (Q), (R) đôi một cắt nhau theo ba giao tuyến phân biệt a, b, c, trong đó \(a = (P) \cap (R),b = (Q) \cap (R),c = (P) \cap (Q)\)
- Nếu hai đường thẳng a và b cắt nhau tại điểm M thì đường thẳng c có đi qua điểm M hay không (Hình 38a)?
- Nếu đường thẳng a song song với đường thẳng b thì đường thẳng a có song song với đường thẳng c hay không (Hình 38b)?
Trong không gian, cho điểm M và đường thẳng d không đi qua điểm M (Hình 36). Nêu dự đoán về số đường thẳng đi qua điểm M và song song với đường thẳng d.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, AB, SD. Xác định giao tuyến của mỗi cặp mặt phẳng sau: (SAD) và (SBC); (MNP) và (ABCD).
Cho tứ diện ABCD. Gọi \({G_1},{G_2}\) lần lượt là trọng tâm của các tam giác ABC và ABD. Chứng minh rằng đường thẳng \({G_1}{G_2}\) song song với đường thẳng CD.
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn và \(AB = 2CD\).Gọi M, N lần lượt là trung điểm của các cạnh SA và SB. Chứng minh rằng đường thẳng NC song song với đường thẳng MD.
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.
Trong không gian, hai đường thẳng song song với nhau khi và chỉ khi:
A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung
B. Hai đường thẳng không có điểm chung
C. Hai đường thẳng cùng nằm trong một mặt phẳng
D. Hai đường thẳng cùng song song với đường thẳng thứ ba
Một chiếc lều (Hình 16a) được minh hoạ như Hình 16b.
a) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song.
b) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy.
Cho tứ diện \(ABCD\) có \(I\) và \(J\) lần lượt là trung điểm của các cạnh \(BC\) và \(B{\rm{D}}\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(I,J\) và cắt hai cạnh \(AC\) và \(A{\rm{D}}\) lần lượt tại \(M\) và \(N\).
a) Chứng minh \(IJNM\) là một hình thang.
b) Tìm vị trí của điểm \(M\) dễ \(IJNM\) là hình bình hành.
Ta đã biết trong cùng một mặt phẳng, hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau (Hình 13a).
Trong không gian, cho ba đường thẳng không đồng phẳng, \(a\) và \(b\) cùng song song với \(c\). Gọi \(M\) là điểm thuộc \(a\), \(d\) là giao tuyến của \(mp\left( {a,c} \right)\) và \(mp\left( {M,b} \right)\) (Hình 13b). Do \(b\parallel c\) nên ta có \(d\parallel b\) và \(d\parallel c\). Giải thích tại sao \(d\) phải trùng với \(a\). Từ đó, nêu kết luận về vị trí giữa \(a\) và \(b\).
Cho hình chóp \(S.ABCD\). Vẽ hình thang \(A{\rm{D}}M{\rm{S}}\) có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\). Gọi \(d\) là đường thẳng trong không gian đi qua \({\rm{S}}\) và song song với \(A{\rm{D}}\). Chứng minh đường thẳng \(d\) nằm trong mặt phẳng \(\left( {SAD} \right)\).
a) Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M,d} \right)\). Trong \(\left( P \right)\), qua \(M\) vẽ đường thẳng \(d'\) song song với \(d\), đặt \(\left( Q \right) = mp\left( {d,d'} \right)\). Có thể khẳng định hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) trùng nhau không?
b) Cho ba mặt phẳng \(\left( P \right),\left( Q \right),\left( R \right)\) cắt nhau theo ba giao tuyến \(a,b,c\) phân biệt với \(a = \left( P \right) \cap \left( R \right);b = \left( Q \right) \cap \left( R \right);c = \left( P \right) \cap \left( Q \right)\) (Hình 8).
Nếu \(a\) và \(b\) có điểm chung \(M\) thì điểm \(M\) có thuộc \(c\) không?
Cho hai đường thẳng song song \(a\) và \(b\). Mệnh đề sau đây đúng hay sai?
a) Một đường thẳng \(c\) cắt \(a\) thì cũng cắt \(b\).
b) Một đường thẳng \(c\) chéo với \(a\) thì cũng chéo với \(b\).
Cho hình chóp \(S.ABC\) và điểm thuộc miền trong tam giác \(ABC\) (Hình 17). Qua \(M\), vẽ đường thẳng \(d\) song song với \(SA\), cắt \(\left( {SBC} \right)\) tại \(N\). Trên hình vẽ, hãy chỉ rõ vị trí của điểm \(N\) và xác định giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {CMN} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.
a) Tìm giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\).
b) Lấy một điểm \(M\) trên đoạn \(SA\) (\(M\) khác \(S\) và \(A\)), mặt phẳng \(\left( {BCM} \right)\) cắt \(SD\) tại \(N\). Tứ giác \(CBMN\) là hình gì?
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(I\) là trung điểm của \(SD\). Hai mặt phẳng \(\left( {IAC} \right)\) và \(\left( {SBC} \right)\) cắt nhau theo giao tuyến \(Cx\). Chứng minh rằng \(Cx\parallel SB\).
Cho ba mặt phẳng phân biệt \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\) có \(\left( \alpha \right) \cap \left( \beta \right) = a\), \(\left( \beta \right) \cap \left( \gamma \right) = b\), \(\left( \alpha \right) \cap \left( \gamma \right) = c\). Khi đó ba đường thẳng \(a,b,c\) sẽ
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn là \(CD\). Gọi \(M\) là trung điểm của \(SA\), \(N\) là giao điểm của cạnh \(SB\) và mặt phẳng \(\left( {MCD} \right)\). Mệnh đề nào sau đây đúng?
Cho hình chóp \(S.ABCD\). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(BC\). Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SIJ} \right)\) là một đường thẳng song song với