Trong Hình 4.70, đường thẳng nào là đường trung trực của đoạn thẳng AB?
Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.
Quan sát hình 4.70 ta thấy đường thẳng m vuông góc với đoạn thẳng AB tại trung điểm của AB nên m là đường trung trực của AB.
Các bài tập cùng chuyên đề
Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB.
Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau. Mở mảnh giấy ra, kẻ một đường thẳng d theo nếp gấp.
a) Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không?
b) Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?
Trong Hình 4.64, bạn Lan vẽ đường trung trực của các đoạn thẳng. Theo em, hình nào Lan vẽ đúng?
Trên mảnh giấy trong HĐ3, lấy điểm M bất kì trên đường thẳng d. Dùng thước thẳng có vạch chia kiểm tra xem AM có bằng BM không (H.4.65).
Cho M là một điểm nằm trên đường trung trực của đoạn thẳng AB. Biết AM = 3 cm và \(\widehat {MAB}\)= 60° (H.4.67). Tính BM và số đo góc MBA.
Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.
Đường thẳng d trong hình nào dưới đây là đường trung trực của đoạn thẳng AB?
Cho A là một điểm tuỳ ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?
a) AB = AC
b) Tam giác ABC đều
c) \(\widehat {ABC} = \widehat {ACB}\)
d) Tam giác ABC cân tại đỉnh A.
Trong các câu sau đây, câu nào đúng?
A. Đường thẳng đi qua trung điểm của đoạn thẳng AB là đường trung trực của đoạn thẳng AB.
B. Đường thẳng vuông góc với đoạn thẳng AB là đường trung trực của đoạn thẳng AB.
C. Tập hợp các điểm cách đều hai điểm phân biệt A và B là đường thẳng đi qua trung điểm của đoạn thẳng AB.
D. Đường thẳng đi qua trung điểm và vuông góc với đoạn thẳng AB là đường trung trực của đoạn thẳng AB.
Cho tam giác ABC cân tại đỉnh A. Gọi M là trung điểm của BC. Trên cạnh AB và AC lấy các điểm P, Q sao cho MP, MQ lần lượt vuông góc với AB, AC (H.4.59)
a) Chứng minh rằng MP = MQ và AP = AQ
b) Đường thẳng PQ có vuông góc với AM không? Vì sao?
Đường thẳng d là đường trung trực của đoạn thẳng AB khi và chỉ khi
A. d đi qua trung điểm AB.
B. d là trục đối xứng của AB.
C. d vuông góc với AB.
D. d vuông góc với AB tại trung điểm của AB.
Trong hình dưới đây, đường thẳng nào là đường trung trực của đoạn thẳng AB.
Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm AB, AC. Gọi O là giao diểm của đường thẳng BN và CM. Chứng minh rằng O nằm trên đường trung trực của đoạn thẳng BC.
Cho hình chữ nhật ABCD và cho M là trung điểm của đoạn thẳng AB như hình vẽ dưới đây. Chứng minh rằng M nằm trên đường trung trực của CD.
Cho tam giác ABC vuông tại A có \(\widehat B = {60^o}\). Trên cạnh BC lấy điểm M sao cho \(\widehat {CAM} = {30^o}\). Chứng minh rằng
a) Tam giác CAM cân tại M
b) Tam giác BAM đều
c) M là trung điểm của đoạn thẳng BC.
Lấy một mảnh giấy như trong Hình 1a, gọi một mép cắt là đoạn thẳng AB. Sau đó gấp mảnh giấy sao cho điểm A trùng với điểm B (Hình 1b)
Theo em nếp gấp xy có vuông góc với đoạn AB tại trung điểm hay không? Tại sao?
Cho hình chữ nhật ABCD, trên cạnh AB lấy các điểm M, N, P và trên cạnh DC lấy các điểm M’, N’, P’. Cho biết AM = MN = NP = PB và MM’, NN’, PP’ đều song song với BC (Hình 3). Tìm đường trung trực của mỗi đoạn thẳng AB, AN và NB.
Trong Hình 4, hãy cho biết BD có là đường trung trực của đoạn thẳng AC hay không? Tại sao?
Cho đoạn thẳng AB có O là trung điểm và d là đường trung trực. Lấy điểm M tùy ý thuộc d (Hình 5). Chứng minh rằng hai tam giác MOA và MOB bằng nhau, từ đó suy ra MA = MB
Trong Hình 8, cho biết d là đường trung trực của đoạn thẳng AB, điểm M thuộc đường thẳng d, MA = x + 2 và MB = 7. Tính x
Dựng đường trung trực của đoạn thẳng AB bằng thước thẳng và compa theo hướng dẫn sau:
- Lấy A làm tâm vẽ cung tròn bán kính lớn hơn \(\dfrac{1}{2}\)AB (Hình 9a)
- Lấy B làm tâm vẽ cung tròn có bán kính bằng bán kính ở trên (Hình 9b)
- Hai cung tròn này cắt nhau tại M và N (Hình 9c). Dùng thước vẽ đường thẳng MN. Hãy chứng minh đường thẳng MN chính là đường trung trực của đoạn thẳng AB.
Hình 10 minh họa một tờ giấy có hình vẽ đường trung trực xy của đoạn thẳng AB mà hình ảnh điểm B bị nhòe mất. Hãy nêu cách xác định điểm B.
Quan sát Hình 11, cho biết M là trung điểm của BC, AM vuông góc với BC và AB = 10 cm, Tính AC.
Quan sát Hình 12, cho biết AM là đường trung trực của đoạn thẳng BC và DB = DC = 8 cm. Chứng minh rằng ba điểm A, M, D thẳng hàng.
Quan sát Hình 13, biết AB = AC, DB = DC. Chứng minh rằng M là trung điểm của BC.
Cho hai điểm M và N nằm trên đường trung trực d của đoạn thẳng EF. Chứng minh rẳng \(\Delta EMN=\Delta FMN\)
Trên bản đồ qui hoạch một khu dân cư có một con đường d và hai điểm dân cư A và B (Hình 14). Hãy tìm bên đường một địa điểm M để xây dựng một trạm y tế sao cho trạm y tế cách đều hai điểm dân cư.
Điền vào chỗ trống sau: “Đường thẳng vuông góc với một đoạn thẳng tại … của nó được gọi là đường trung trực của đoạn thẳng đó”.
Hình 86 minh họa chiếc cân thăng bằng và gợi nên hình ảnh đoạn thẳng AB, đường thẳng d.
Đường thẳng d có mối liên hệ gì với đoạn thẳng AB?
Quan sát Hình 87.
a) So sánh hai đoạn thẳng IA và IB.
b) Tìm số đo của các góc \({I_1},{I_2}\).