Đề bài
Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
-
A.
\(10\)
-
B.
\(11\)
-
C.
\(12\)
-
D.
\(13\)
Phương pháp giải
Sử dụng mối quan hệ giữa các hàng trăm, hàng chục hàng đơn vị khi phân tích một số trong hệ thập phân
Lời giải của GV Loigiaihay.com
Ta có \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} .100 + \overline {xy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} \left( {100 + 1} \right)\)
\(\overline {xy} .\overline {xyx} = \overline {xy} .101\)
Suy ra \(\overline {xyx} = 101\) nên \(x = 1;y = 0\)
Vậy \(\overline {xy} = 10.\)
Đáp án : A




Danh sách bình luận