Đề bài

Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\)  sao cho \(OA\)  là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).

  • A.

    \(\widehat {AOB} = 70^\circ ;\,\widehat {BOC} = 140^\circ \)             

  • B.

    \(\widehat {AOB} = 90^\circ ;\,\widehat {BOC} = 120^\circ \)   

  • C.

    \(\widehat {AOB} = 120^\circ ;\,\widehat {BOC} = 60^\circ \)                               

  • D.

    \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 120^\circ \)

Phương pháp giải

Sử dụng: Nếu tia \(Ot\)  là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)

Lời giải của GV Loigiaihay.com

Vì tia \(OA\)  là tia phân giác của \(\widehat {BOC}\) nên ta có

\(\widehat {AOB} = \widehat {AOC} = \dfrac{{\widehat {BOC}}}{2}\) nên \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 2.\widehat {AOC} = 2.60^\circ  = 120^\circ \)

Vậy \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 120^\circ \).

Đáp án : D