Cho tứ giác \(ABCD\) có bốn góc bằng nhau và có bốn cạnh bằng nhau. Hãy chứng tỏ \(ABCD\) vừa là hình thoi vừa là hình thoi vừa là hình chữ nhật.
Áp dụng dấu hiệu nhận biết hình thoi và hình chữ nhật
Xét tứ giác \(ABCD\) có bốn góc bằng nhau: \(\widehat A = \widehat B = \widehat C = \widehat D\) mà \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)
Suy ra \(\widehat A = \widehat B = \widehat C = \widehat D = \frac{{360^\circ }}{4} = 90^\circ \)
Suy ra \(ABCD\) là hình chữ nhật
Xét tứ giác \(ABCD\) có bốn cạnh \(AB = BC = CD = DA\) nên là hình thoi
Vậy \(ABCD\) vừa là hình thoi vừa là hình chữ nhật
Các bài tập cùng chuyên đề
Hãy giải thích tại sao hai đường chéo của hình vuông bằng nhau và vuông góc với nhau.
Cho hình vuông \(MNPQ\). Chứng minh \(MNPQ\) vừa là hình chữ nhật vừa là hình thoi.
Tìm hình vuông trong hai hình sau:
Tìm bốn ví dụ về hình vuông trong thực tế
Cho biết các góc và các cạnh của tứ giác ABCD ở Hình 65 có đặc điểm gì?
Em hãy mô tả cạnh và góc của một tứ giác vừa là hình chữ nhật, vừa là hình thoi.
Cho hình vuông \(ABCD\) có \(AB = 12cm\). Trên cạnh \(CD\) lấy điểm \(E\) sao cho \(DE = 5cm\). Tia phân giác của góc \(BAE\) cắt \(BC\) tại \(F\). Trên tia đối của tia \(BC\) lấy điểm \(M\) sao cho \(BM = DE\).
a) Chứng minh \(AE = AM = DE\)
b) Tính độ dài \(BF\).
Cho hình vuông \(ABCD\). Lấy điểm \(E\) thuộc cạnh \(CD\) và điểm \(F\) thuộc tia đối của tia \(BC\) sao cho \(BF = DE\).
a) Chứng minh tam giác \(AEF\) là tam giác vuông cân
b) Gọi \(I\) là trung điểm của \(EF\). Trên tia đối của tia \(IA\) lấy điểm \(K\) sao cho \(IK = IA\). Chứng minh tứ giác \(AEKF\) là hình vuông.
c) Chứng minh \(I\) thuộc đường thẳng \(BD\).