Đề bài

Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.

Phương pháp giải

Áp dụng công thức tính thể tích của hình lập phương

Áp dụng hằng đẳng thức: Hiệu của hai lập phương

Lời giải của GV Loigiaihay.com

Thể tích phần còn lại của khối lập phương là:

\(\begin{array}{l}{\left( {2x + 1} \right)^3} - {\left( {x + 1} \right)^3}\\ = \left[ {\left( {2x + 1} \right) - \left( {x + 1} \right)} \right].\left[ {{{\left( {2x + 1} \right)}^2} + \left( {2x + 1} \right)\left( {x + 1} \right) + {{\left( {x + 1} \right)}^2}} \right]\\ = x.\left[ {4{x^2} + 4x + 1 + 2{x^2} + 2x + x + 1 + {x^2} + 2x + 1} \right]\\ = x.\left( {7{x^2} + 9x + 3} \right)\\ = 7{x^3} + 9{x^2} + 3x\end{array}\)

Các bài tập cùng chuyên đề

Bài 1 :

Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).

Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).

Xem lời giải >>
Bài 2 :

Cho \(a\) và \(b\) là hai số thực bất kì.

a) Thực hiện phép tính \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

b) \({a^3} - {b^3} = ?\)

Xem lời giải >>
Bài 3 :

a) Tính \(\left( {a - 4} \right)\left( {{a^2} + 4a + 16} \right).\)

b) Viết \(64{x^3} - 27{y^3}\) dưới dạng tích.

Xem lời giải >>
Bài 4 :

Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức

A.\(x - 2\) và \({x^2} - 2x - 4\) 

B. \(x - 2\) và \({x^2} + 2x - 4\)

C. \(x - 2\) và \({x^2} + 2x + 4\)        

D. \(x - 2\) và \({x^2} - 2x + 4\)

Xem lời giải >>
Bài 5 :

Đa thức \(8{x^3} - 27{y^3}\) được viết thành tích của hai đa thức:

A. \(2x + 3y\) và \(4{x^2} - 6xy + 9{y^2}\).

B. \(2x + 3y\) và \(4{x^2} + 6xy + 9{y^2}\).

C. \(2x-3y\) và \(4{x^2} - 6xy + 9{y^2}\).

D. \(2x-3y\) và \(4{x^2} + 6xy + 9{y^2}\).

Xem lời giải >>
Bài 6 :

Vế phải của hằng đẳng thức: \(x^3−y^3=....\) là:

Xem lời giải >>
Bài 7 :

Biểu thức \(8x^3−\frac{1}{8}\) bằng

Xem lời giải >>
Bài 8 :

Biểu thức \(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right)\) là dạng phân tích đa thức thành nhân tử của đa thức

Xem lời giải >>