Đề bài

Trong không gian Oxyz, có một nguồn sáng phát ra từ điểm S(2; 3; 5) và một đoạn dây thẳng nối từ điểm A(1; 2; 1) đến điểm B(3; 1; 2). Dưới nguồn sáng, đoạn dây trên có bóng trên mặt phẳng (Oxy) là một đoạn thẳng. Tính độ dài đoạn thẳng đó. 

 

Phương pháp giải

Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\)).

Sử dụng kiến thức về độ dài đoạn thẳng trong không gian để tính: Nếu \(A\left( {{x_A};{y_A};{z_A}} \right)\) và \(B\left( {{x_B};{y_B};{z_B}} \right)\) thì \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)

 
Lời giải của GV Loigiaihay.com

Phương trình mặt phẳng Oxy: \(z = 0\)

Đường thẳng SA đi qua điểm \(A\left( {1;2;1} \right)\) và nhận \(\overrightarrow {SA} \left( { - 1; - 1; - 4} \right)\) làm một vectơ chỉ phương nên phương trình tham số của đường thẳng SA là: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 - t\\z = 1 - 4t\end{array} \right.\)

Gọi N là giao điểm của đường thẳng SA và mặt phẳng (Oxy) nên \(N\left( {1 - t;2 - t;1 - 4t} \right)\)

Thay tọa độ điểm N vào phương trình mặt phẳng (Oxy) ta có: \(1 - 4t = 0 \Rightarrow t = \frac{1}{4}\)

Khi đó, \(N\left( {\frac{3}{4};\frac{7}{4};0} \right)\).

Đường thẳng SB đi qua điểm \(B\left( {3;1;2} \right)\) và nhận \(\overrightarrow {SB} \left( {1; - 2; - 3} \right)\) làm một vectơ chỉ phương nên phương trình tham số của đường thẳng SB là: \(\left\{ \begin{array}{l}x = 3 + t\\y = 1 - 2t\\z = 2 - 3t\end{array} \right.\)

Gọi P là giao điểm của đường thẳng SB và mặt phẳng (Oxy) nên \(P\left( {3 + t;1 - 2t;2 - 3t} \right)\)

Thay tọa độ điểm P vào phương trình mặt phẳng (Oxy) ta có: \(2 - 3t = 0 \Rightarrow t = \frac{2}{3}\)

Khi đó, \(P\left( {\frac{{11}}{3};\frac{{ - 1}}{3};0} \right)\)

Ta có: \(NP = \sqrt {{{\left( {\frac{3}{4} - \frac{{11}}{3}} \right)}^2} + {{\left( {\frac{7}{4} + \frac{1}{3}} \right)}^2}}  = \frac{{5\sqrt {74} }}{{12}}\)

Vậy độ dài bóng của đoạn dây trên mặt phẳng (Oxy) bằng \(\frac{{5\sqrt {74}}}{{12}}\).

 

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho hai điểm phân biệt \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\).

a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng \({A_1}{A_2}\).

b) Viết phương trình đường thẳng \({A_1}{A_2}\).

Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {1;{\rm{ }}1;{\rm{ }}2} \right)\) và song song với đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 1}}{1} = \frac{{z + 5}}{3}\).

Xem lời giải >>
Bài 3 :

Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {2; - 1;4} \right)\) và vuông góc với mặt phẳng \(\left( P \right):x + 3y - z - 1 = 0\).

Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, cho điểm \(I\left( { - 1;2;1} \right)\) và mặt phẳng \(\left( P \right):2x - 2y - z - 5 = 0\). Viết phương trình đường thẳng d đi qua I và vuông góc với mặt phẳng (P).

 
Xem lời giải >>
Bài 5 :

Trong không gian Oxyz, cho điểm \(A\left( { - 1;1;2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 - 2t\\z =  - 1 + 2t\end{array} \right.\).

a) Viết phương trình đường thẳng d’ đi qua A và song song với đường thẳng d.

b) Viết phương trình mặt phẳng (P) chứa điểm A và đường thẳng d.

 
Xem lời giải >>
Bài 6 :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \({M_o}\left( {1;2;3} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 3;5} \right)\). Xét điểm \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) nằm trên \(\Delta \) (Hình 24).

a) Nêu nhận xét về phương của hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_o}M} \).

b) Có hay không số thực t sao cho \(\overrightarrow {{M_o}M}  = t\overrightarrow u \)?

c) Hãy biểu diễn x, y, z qua t.

d) Tọa độ (x; y; z) của điểm M (nằm trên \(\Delta \)) có thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 3t\\z = 3 + 5t\end{array} \right.\) hay không?

Xem lời giải >>
Bài 7 :

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;2;3} \right)\) và \(B\left( {3;5;9} \right)\).

a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng AB.

b) Viết phương trình tham số của đường thẳng AB.

c) Viết phương trình chính tắc của đường thẳng AB.

Xem lời giải >>
Bài 8 :

Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:

a) \(\Delta \) đi qua điểm \(A\left( { - 1;3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 2;3;4} \right)\).

b) \(\Delta \) đi qua hai điểm \(M\left( {2; - 1;3} \right)\) và \(N\left( {3;0;4} \right)\).

Xem lời giải >>
Bài 9 :

Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là \(S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),A\left( {\frac{a}{2};0;0} \right),B\left( { - \frac{a}{2};0;0} \right),C\left( { - \frac{a}{2};a;0} \right),D\left( {\frac{a}{2};a;0} \right)\) với \(a > 0\) (Hình 36).

a) Xác định tọa độ của các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \). Từ đó tính góc giữa hai đường thẳng SA và CD (làm tròn kết quả đến hàng đơn vị của độ).

b) Chỉ ra một vectơ pháp tuyến của mặt phẳng (SAC). Từ đó tính góc đường thẳng SD và mặt phẳng (SAC) (làm tròn kết quả đến hàng đơn vị của độ).

Xem lời giải >>
Bài 10 :

Trong không gian \(Oxyz\), cho hình lăng trụ \(OAB.O'A'B'\). Biết \(O\) là gốc toạ độ, \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\). Viết phương trình các mặt phẳng \(\left( {O'AB} \right)\) và \(\left( {O'A'B'} \right)\).

Xem lời giải >>
Bài 11 :

Cho đường thẳng \(d\) đi qua hai điểm \(A\left( {2;2;1} \right)\) và \(B\left( {4;5;3} \right).\)

a) Tìm một vectơ chỉ phương của \(d.\)

b) Viết phương trình tham số và phương trình chính tắc của \(d.\)

Xem lời giải >>
Bài 12 :

Viết phương trình tham số và phương trình chính tắc của đường thẳng \(MN\), biết \(M\left( {2;0; - 1} \right)\) và \(N\left( {4;3;1} \right).\)

Xem lời giải >>
Bài 13 :

Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:

a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 2;3;4} \right)\);

b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\).

c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).

Xem lời giải >>
Bài 14 :

Trong không gian Oxyz, cho ba điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;2;1} \right)\), \(C\left( {2;3;4} \right)\).

a) Viết phương trình tham số, phương trình chính tắc của đường thẳng AB.

b) Viết phương trình tham số của đường thẳng d, đi qua điểm C và song song với AB.

Xem lời giải >>
Bài 15 :

Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 3t\\y =  - 1 - t\\z =  - 3 + 2t\end{array} \right.\) và mặt phẳng \(\left( P \right):x - y - z = 0\)

a) Tìm tọa độ giao điểm I của đường thẳng d và mặt phẳng \(\left( P \right)\).

b) Viết phương trình đường thẳng \(d'\) nằm trên mặt phẳng \(\left( P \right)\) sao cho \(d'\) cắt và vuông góc với \(d\).

Xem lời giải >>
Bài 16 :

Trong không gian Oxyz, cho hai đường thẳng:

\(\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 2t\\z =  - 1 + t\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x =  - 1 + s\\y = 2 - s\\z = 3 + 2s\end{array} \right.\)

a) Xét vị trí tương đối của hai đường thẳng \(\Delta \) và \(\Delta '\).

b) Tính côsin của góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\).

c) Viết phương trình đường thẳng d đi qua \(A\left( { - 3;2;2} \right)\) và song song với đường thẳng \(\Delta \).

Xem lời giải >>
Bài 17 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho hai điểm \(A\left( {2;1; - 2} \right),B\left( { - 2; - 2; - 9} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y =  - 1 + t\\z =  - t\end{array} \right.\).

a) Điểm \(A\) thuộc đường thẳng \(d\).

b) Điểm \(B\) thuộc đường thẳng \(d\).

c) Đường thẳng \(AB\) vuông góc với \(d\).

d) \(\overrightarrow {AB}  = \left( {4;3; - 7} \right)\).

Xem lời giải >>
Bài 18 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho hai đường thẳng \(d:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{y}{{ - 4}} = \frac{{z - 1}}{{ - 5}}\).

a) Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;0; - 1} \right)\).

b) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow a  = \left( { - 4;2; - 4} \right)\).

c) Đường thẳng \(d'\) không đi qua điểm \(N\left( {2;0;1} \right)\).

d) Đường thẳng \(d\) vuông góc với \(d'\).

Xem lời giải >>
Bài 19 :

Trong không gian Oxyz, cho tam giác OAB với \(A(2; - 3;4)\), \(B( - 4;5;0)\). Viết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng AB và đường thẳng chứa đường trung tuyến kẻ từ O của tam giác OAB.

Xem lời giải >>
Bài 20 :

Trong không gian Oxyz, cho đường thẳng \(d\) qua hai điểm phân biệt \(A({x_A};{y_A};{z_A})\) và \(B({x_B};{y_B};{z_B})\).

a) Vectơ \(\overrightarrow {AB} \) có phải là một vectơ chỉ phương của \(d\) không? Vì sao?

b) Viết phương trình tham số của đường thẳng \(d\).

c) Giả sử \({x_B} \ne {x_A},{y_B} \ne {y_A}\) và \({z_B} \ne {z_A}\), hãy viết phương trình chính tắc của \(d\).

Xem lời giải >>
Bài 21 :

Viết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng \(d\) trong mỗi trường hợp sau:

a) \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\).

b) \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\).

c) \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 3 + 3t}\\{z = 4}\end{array}} \right.\).

d) \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 4}}{3}\).

Xem lời giải >>
Bài 22 :

Cho hình chóp S.ABCD với ABCD là hình bình hành, \(S(3; - 2;4)\), \(A(3;4;5)\), \(B(8;8;6)\), \(C(7;6;3)\). Viết phương trình đường thẳng chứa cạnh SB và đường thẳng chứa cạnh đáy AD của hình chóp.

Xem lời giải >>
Bài 23 :

Cho đường thẳng \(d\):

\(d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - 2t}\\{y = 3 + 3t{\mkern 1mu} (t \in \mathbb{R})}\\{z = 6 + 4t}\end{array}} \right.\)

a) Tìm tọa độ điểm \(A\) thuộc \(d\), biết \(OA = 7\).

b) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(O\) trên \(d\) và tính khoảng cách từ \(O\) đến \(d\).

Xem lời giải >>
Bài 24 :

Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

Xem lời giải >>
Bài 25 :

Cho đường thẳng d: \(\frac{{x + 3}}{2} = \frac{{y - 1}}{1} = \frac{z}{3}\) và d’: \(\left\{ \begin{array}{l}x = 4 + 2t\\y = 2 + t\\z =  - 1 + 3t\end{array} \right.\). Trong mỗi ý a), b), c), d), chọn phương án Đúng (Đ) hoặc Sai (S).

Xem lời giải >>
Bài 26 :

Cho đường thẳng d: \(\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{{z + 1}}{{ - 1}}\) và mặt phẳng (P): x + 2y + 4z + 1 = 0. Trong mỗi ý a), b), c), d), chọn phương án Đúng (Đ) hoặc Sai (S).

Xem lời giải >>
Bài 27 :

Trên thiết kế trong không gian Oxyz, một con đường thuộc đường thẳng có phương trình d: \(\frac{x}{{ - 1}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\). Một chiếc ô tô đang đỗ được định vị có tọa độ (0;-1;2), một trung tâm thương mại có tọa độ (-1;0;3) và công viên có tọa độ (-2;1;4). Trong mỗi ý a), b), c), d), chọn phương án Đúng (Đ) hoặc Sai (S).

Xem lời giải >>
Bài 28 :

Trong không gian Oxyz, cho hai đường thẳng:

\(\Delta :\left\{ \begin{array}{l}x = 3\\y = 1 + t\\z =  - 1 + 3t\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 + s\\y =  - 2 + 3s\\z =  - 5\end{array} \right.\)

a) Xét vị trí tương đối của hai đường thẳng \(\Delta \) và \(\Delta '\).

b) Tính cosin góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\).

Xem lời giải >>
Bài 29 :

Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1). Tìm góc giữa:

a) Hai mặt phẳng (ABC) và (BCD);

b) Hai đường thẳng AB và CD;

c) Đường thẳng AB và mặt phẳng (BCD).

Xem lời giải >>
Bài 30 :

Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2;3} \right)\) và hai đường thẳng \({d_1}:{\rm{ }}\frac{x}{1} = \frac{y}{1} = \frac{z}{2};{\rm{ }}{d_2}:{\rm{ }}\frac{{x - 2}}{3} = \frac{y}{2} = \frac{z}{1}\). Đường thẳng \(\Delta \) đi qua \(A\), vuông góc với \({d_1}\) và cắt \({d_2}\). Biết \(\Delta \) có một vectơ chỉ phương \(\vec u = \left( {a;b; - 1} \right)\). Tổng \({a^3} + {b^3}\) bằng:

Xem lời giải >>