Trong một hộp kín có 7 chiếc bút bi xanh và 5 chiếc bút bi đen, các chiếc bút có cùng kích thước và khối lượng. Bạn Sơn lấy ngẫu nhiên một chiếc bút trong hộp, không trả lại. Sau đó, Tùng lấy ngẫu nhiên 1 trong 11 chiếc bút còn lại. Tính xác suất để Tùng lấy được bút bi xanh nếu biết rằng Sơn đã lấy được bút bi đen.
Sử dụng kiến thức về quy tắc nhân hai biến cố độc lập để tính: Nếu A và B độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).
Gọi A là biến cố: “Tùng lấy được bút bi xanh”, B là biến cố: “Sơn lấy được bút bi đen”.
Sơn có 12 cách chọn, Tùng có 11 cách chọn một chiếc bút bi trong hộp.
Do đó, \(n\left( \Omega \right) = 12.11 = 132\)
Sơn có 5 cách chọn bút bi đen, Tùng có 11 cách chọn bút bi xanh từ 11 bút bi còn lại.
Do đó, \(n\left( B \right) = 5.11 = 55\) và \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}}\)
Sơn có 5 cách chọn bút bi đen, Tùng có 7 cách chọn bút bi xanh từ 11 bút bi còn lại.
Do đó, \(n\left( {AB} \right) = 5.7 = 35\) và \(P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}}\)
Vậy xác suất để Tùng lấy được bút bi xanh nếu Sơn lấy được bút bi đen là: \(P = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{n\left( {AB} \right)}}{{n\left( B \right)}} = \frac{{35}}{{55}} = \frac{7}{{11}}\)
Các bài tập cùng chuyên đề
Trong tình huống mở đầu Mục 2, gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.
a) Nêu các nội dung còn thiếu tương ứng với “(?)” để hoàn thành các câu sau đây:
- \(P\left( {A|B} \right)\) là xác suất để (?) với điều kiện (?);
- \(P\left( {B|A} \right)\) là xác suất để (?) với điều kiện (?).
b) 0,95 là \(P\left( {A|B} \right)\) hay \(P\left( {B|A} \right)\)? Có phải ông M có xác suất 0,95 mắc bệnh hiểm nghèo X không?
Hộp thứ nhất chứa 2 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 2 viên bi xanh và 3 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Thanh lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi \(A\) là biến cố: “Viên bi lấy ra lần thứ nhất là bi xanh”, \(B\) là biến cố “Viên bi lấy ra lần thứ hai là bi đỏ”
a) Biết rằng biến cố \(A\) xảy ra, tính xác suất của biến cố \(B\).
b) Biết rằng biến cố \(A\) không xảy ra, tính xác suất của biến cố \(B\).
Xét phép thử lấy thẻ ở Ví dụ 1: Một hộp chứa ba tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 3. Bạn Hà lấy ra một cách ngẫu nhiên một thẻ từ hộp, bỏ thẻ đó ra ngoài và lại lấy ra một cách ngẫu nhiên thêm một thẻ nữa. Xét các biến cố:
A: “Thẻ lấy ra lần thứ nhất ghi số 1”
B: “Thẻ lấy ra lần thứ nhất ghi số 2”
D: “Thẻ lấy ra lần thứ hai ghi số lớn hơn 1”.
Tinh \(P\left( {D|A} \right)\) và \(P\left( {D|B} \right)\).
Xét phép thử ở Ví dụ 2: Câu lạc bộ cờ của nhà trường có 35 thành viên, mỗi thành viên biết chơi ít nhất một trong hai môn cờ vua hoặc cờ tướng. Biết rằng có 25 thành viên biết chơi cờ vua và 20 thành viên biết chơi cờ tướng. Chọn ngẫu nhiên 1 thành viên của câu lạc bộ. Tính xác suất thành viên được chọn không biết chơi cờ tướng, biết rằng thành viên đó biết chơi cờ vua.
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất cũng màu đỏ là
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại).
Xét các biến cố:
A: "Lần thứ nhất lấy ra chai nước loại I".
B: "Lần thứ hai lấy ra chai nước loại I".