Đề bài

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó tương ứng thuộc hai đường thẳng: \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 0\end{array} \right.;{\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2s\\y = 2s\\z = 1\end{array} \right.\). Hỏi hai con đường trên có vuông góc với nhau hay không?

Phương pháp giải

Sử dụng kiến thức về điều kiện để hai đường thẳng vuông góc: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}}  = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)

Lời giải của GV Loigiaihay.com

Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} \left( {1;1;0} \right)\)

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} \left( { - 2;2;0} \right)\)

Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 1.\left( { - 2} \right) + 1.2 + 0.0 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.

Do đó, hai con đường trên vuông góc với nhau.

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz không?

Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, tìm hai đường thẳng vuông góc nhau trong ba đường thẳng sau đây: \({d_1}:\frac{{x - 5}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}},\quad {d_2}:\frac{{x - 2}}{{ - 3}} = \frac{{y - 3}}{1} = \frac{{z - 1}}{6},\quad {d_3}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t}\\{y = 3}\\{z = 4 - t}\end{array}} \right.\)

Xem lời giải >>
Bài 3 :

Chứng minh ba đường thẳng sau đây đôi một vuông góc:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 3 + 2t{\mkern 1mu} (t \in \mathbb{R})}\\{z =  - 1 + 4t}\end{array}} \right.\quad {d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2m}\\{y = 1 - m{\mkern 1mu} (m \in \mathbb{R})}\\{z = 2 + m}\end{array}} \right.\quad {d_3}:\frac{{x + 3}}{2} = \frac{{y - 2}}{3} = \frac{z}{{ - 1}}\)

Xem lời giải >>