Đề bài

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó tương ứng thuộc hai đường thẳng: \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 0\end{array} \right.;{\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2s\\y = 2s\\z = 1\end{array} \right.\). Hỏi hai con đường trên có vuông góc với nhau hay không?

Phương pháp giải

Sử dụng kiến thức về điều kiện để hai đường thẳng vuông góc: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}}  = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)

Lời giải của GV Loigiaihay.com

Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} \left( {1;1;0} \right)\)

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} \left( { - 2;2;0} \right)\)

Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 1.\left( { - 2} \right) + 1.2 + 0.0 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.

Do đó, hai con đường trên vuông góc với nhau.

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz không?

Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, tìm hai đường thẳng vuông góc nhau trong ba đường thẳng sau đây: \({d_1}:\frac{{x - 5}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}},\quad {d_2}:\frac{{x - 2}}{{ - 3}} = \frac{{y - 3}}{1} = \frac{{z - 1}}{6},\quad {d_3}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t}\\{y = 3}\\{z = 4 - t}\end{array}} \right.\)

Xem lời giải >>
Bài 3 :

Chứng minh ba đường thẳng sau đây đôi một vuông góc:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 3 + 2t{\mkern 1mu} (t \in \mathbb{R})}\\{z =  - 1 + 4t}\end{array}} \right.\quad {d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2m}\\{y = 1 - m{\mkern 1mu} (m \in \mathbb{R})}\\{z = 2 + m}\end{array}} \right.\quad {d_3}:\frac{{x + 3}}{2} = \frac{{y - 2}}{3} = \frac{z}{{ - 1}}\)

Xem lời giải >>