Đề bài

Giả sử f(x) là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\), F(x) và G(x) là hai nguyên hàm tùy ý của f(x) trên đoạn \(\left[ {a;b} \right]\). Chứng minh rằng \(F\left( b \right) - F\left( a \right) = G\left( b \right) - G\left( a \right)\).

 

Phương pháp giải

Sử dụng kiến thức về họ nguyên hàm của một hàm số để chứng minh: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

 
Lời giải của GV Loigiaihay.com

Vì F(x) và G(x) là hai nguyên hàm tùy ý của f(x) trên đoạn \(\left[ {a;b} \right]\) nên tồn tại hằng số C sao cho \(F\left( x \right) = G\left( x \right) + C\).

Do đó, \(F\left( b \right) - F\left( a \right) = G\left( b \right) + C - G\left( a \right) - C = G\left( b \right) - G\left( a \right)\)

 

Các bài tập cùng chuyên đề

Bài 1 :

Giải quyết bài toán ở tình huống mở đầu.

 
Xem lời giải >>
Bài 2 :

Sử dụng ý nghĩa hình học của tích phân, tính:

a) \(\int\limits_1^3 {\left( {2x + 1} \right)dx} \);

b) \(\int\limits_{ - 2}^2 {\sqrt {4 - {x^2}} dx} \).

 
Xem lời giải >>
Bài 3 :

Tính:

a) \(\int\limits_0^1 {{e^x}dx} \);

b) \(\int\limits_1^e {\frac{1}{x}dx} \);

c) \(\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \);

d) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{dx}}{{{{\sin }^2}x}}} \).

 
Xem lời giải >>
Bài 4 :

Xét hình thang cong giới hạn bởi đồ thị \(y = {x^2}\), trục hoành và hai đường thẳng \(x = 1,x = 2\). Ta muốn tính diện tích S của hình thang cong này.

a) Với mỗi \(x \in \left[ {1;2} \right]\), gọi S(x) là diện tích phần hình thang cong đã cho nằm giữa hai đường thẳng vuông góc với trục Ox tại điểm có hoành độ bằng 1 và x (H.4.5).

 

Cho \(h > 0\) sao cho \(x + h < 2\). So sánh hiệu \(S\left( {x + h} \right) - S\left( x \right)\) với diện tích hai hình chữ nhật MNPQ và MNEF (H.4.6). Từ đó suy ra: \(0 \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 2xh + {h^2}\).

b) Cho \(h < 0\) sao cho \(x + h > 1\). Tương tự phần a, đánh giá hiệu \(S\left( x \right) - S\left( {x + h} \right)\) và từ đó suy ra \(2xh + {h^2} \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 0\).

c) Từ kết quả phần a và phần b, suy ra với mọi \(h \ne 0\), ta có

\(\left| {\frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2}} \right| \le 2x\left| h \right| + {h^2}\).

Từ đó chứng minh \(S'\left( x \right) = {x^2},x \in \left( {1;2} \right)\). Người ta chứng minh được \(S'\left( 1 \right) = 1,S'\left( 2 \right) = 4\), tức là S(x) là một nguyên hàm của \({x^2}\) trên \(\left[ {1;2} \right]\).

d) Từ kết quả của phần c, ta có \(S\left( x \right) = \frac{{{x^3}}}{3} + C\). Sử dụng điều này với lưu ý \(S\left( 1 \right) = 0\) và diện tích cần tính \(S = S\left( 2 \right)\), hãy tính S.

Gọi F(x) là một nguyên hàm tùy ý của \(f\left( x \right) = {x^2}\) trên \(\left[ {1;2} \right]\). Hãy so sánh S và \(F\left( 2 \right) - F\left( 1 \right)\).

 
Xem lời giải >>
Bài 5 :

Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng \(y = x + 1\), trục hoành và hai đường thẳng \(x = 1,x = t\left( {1 \le t \le 4} \right)\) (H.4.3).

a) Tính diện tích S của T khi \(t = 4\).

b) Tính diện tích S(t) của T khi \(t \in \left[ {1;4} \right]\).

c) Chứng minh rằng S(t) là một nguyên hàm của hàm số \(f\left( t \right) = t + 1,t \in \left[ {1;4} \right]\) và diện tích \(S = S\left( 4 \right) - S\left( 1 \right)\).

 
Xem lời giải >>
Bài 6 :

Giá trị trung bình của hàm số liên tục f(x) trên đoạn [a; b] được định nghĩa là \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Giả sử nhiệt độ (tính bằng \(^oC\)) tại thời điểm t giờ trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa ở một địa phương vào một ngày nào đó được mô hình hóa bởi hàm số \(T\left( t \right) = 20 + 1,5\left( {t - 6} \right),6 \le t \le 12\). Tìm nhiệt độ trung bình vào ngày đó trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa.

 
Xem lời giải >>
Bài 7 :

Tính và so sánh:

a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);

b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx} \);

c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx} \).

 
Xem lời giải >>
Bài 8 :

Sử dụng ý nghĩa hình học của tích phân, tính:

a) \(\int\limits_1^2 {\left( {2x + 1} \right)dx} \);

b) \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} dx} \).

 
Xem lời giải >>
Bài 9 :

Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hóa bằng công thức \(P'\left( x \right) =  - 0,0005x + 12,2\). Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm.

a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm.

b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.

 
Xem lời giải >>
Bài 10 :

Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức \(v = k\left( {{R^2} - {r^2}} \right)\), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng \(0 \le r \le R\). So sánh vận tốc trung bình với vận tốc lớn nhất.

 
Xem lời giải >>
Bài 11 :

Tính các tích phân sau:

a) \(\int\limits_1^4 {\left( {{x^3} - 2\sqrt x } \right)dx} \);

b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - \sin x} \right)dx} \);

c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{dx}}{{{{\sin }^2}x}}} \);

d) \(\int\limits_1^{16} {\frac{{x - 1}}{{\sqrt x }}dx} \).

 
Xem lời giải >>
Bài 12 :

Cho hàm số f(x) thỏa mãn: \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = 2\sin x + 1\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng

A. \(\frac{{{\pi ^2} + 12\pi  - 16}}{8}\).

B. \(\frac{{{\pi ^2} - 4\pi  + 16}}{8}\).

C. \(\frac{{{\pi ^2} + 6\pi  - 8}}{4}\).

D. \(\frac{{{\pi ^2} - 2\pi  + 8}}{4}\).

 
Xem lời giải >>
Bài 13 :

Khi đạp phanh thì một ô tô chuyển động chậm dần đều với gia tốc \(10m/{s^2}\).

a) Nếu khi bắt đầu đạp phanh ô tô đang chạy với vận tốc 54km/h thì sau bao lâu kể từ khi đạp phanh, ô tô sẽ dừng lại?

b) Nếu ô tô dừng lại trong vòng 20m sau khi đạp phanh thì vận tốc lớn nhất của ô tô ngay trước lúc đạp phanh (tính bằng km/h) có thể là bao nhiêu?

 
Xem lời giải >>
Bài 14 :

Cho hàm số \(y = f(x) = {x^2}\) (Hình 4). Xét hình phẳng (được tô màu) gồm tất cả điểm M(x;y) trên mặt phẳng tọa độ sao cho \(1 \le x \le 2\) và \(0 \le y \le {x^2}\). Hình phẳng đó được gọi là hình thang cong AMNB giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục Ox và hai đường thẳng x = 1 và x = 2

Chia đoạn [1;2] thành n phần bằng nhau bởi các điểm chia: \({x_0} = 1,{x_1} = 1 + \frac{1}{n},{x_2} = 1 + \frac{2}{n},...,{x_{n - 1}} = 1 + \frac{{n - 1}}{n},{x_n} = 1 + \frac{n}{n} = 2\) (Hình 5)

a) Tính diện tích \({T_0}\) của hình chữ nhật dựng trên đoạn \([{x_0};{x_1}]\) với chiều cao là \(f({x_0})\)

Tính diện tích \({T_1}\) của hình chữ nhật dựng trên đoạn \([{x_1};{x_2}]\) với chiều cao là \(f({x_1})\)

Tính diện tích \({T_2}\) của hình chữ nhật dựng trên đoạn \([{x_2};{x_3}]\) với chiều cao là \(f({x_2})\)

Tính diện tích \({T_{n - 1}}\) của hình chữ nhật dựng trên đoạn \([{x_{n - 1}};{x_n}]\) với chiều cao là \(f({x_{n - 1}})\)

b) Đặt \({S_n} = {T_0} + {T_1} + {T_2} + ... + {T_{n - 1}}\). Chứng minh rằng: \({S_n} = \frac{1}{n}[f({x_0}) + f({x_1}) + f({x_2}) + ... + f({x_{n - 1}})]\). Tổng \({S_n}\) gọi là tổng tích phân cấp n của hàm số \(f(x) = {x^2}\) trên đoạn [1;2]

Xem lời giải >>
Bài 15 :

Cho hàm số \(f(x) = {x^2}\)

a) Chứng tỏ \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)

b) Chứng minh rằng \(F(b) - F(a) = G(b) - G(a)\), tức là hiệu số \(F(b) - F(a)\) không phụ thuộc việc chọn nguyên hàm

Xem lời giải >>
Bài 16 :

Cho \(\int\limits_{ - 2}^3 {f(x)dx}  =  - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

Xem lời giải >>
Bài 17 :

Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = {e^x}\), trục hoành, trục tung và đường thẳng \(x = 1\).

Xem lời giải >>
Bài 18 :

Cho hàm số \(y = f\left( x \right) = x + 1\). Với mỗi \(x \ge 1\), kí hiệu \(S\left( x \right)\) là diện tích của hình thang giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng vuông góc với \(Ox\) tại các điểm có hoành độ 1 và \(x\).

 

a) Tính \(S\left( 3 \right)\).

b) Tính \(S\left( x \right)\) với mỗi \(x \ge 1\).

c) Tính \(S'\left( x \right)\). Từ đó suy ra \(S\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\left[ {1; + \infty } \right)\).

d) Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\). Chứng tỏ rằng \(F\left( 3 \right) - F\left( 1 \right) = S\left( 3 \right)\). Từ đó nhận xét về cách tính \(S\left( 3 \right)\) khi biết một nguyên hàm của \(f\left( x \right)\).

Xem lời giải >>
Bài 19 :

Cho hàm số \(f\left( x \right) = 2x - 1\). Lấy hai nguyên hàm tuỳ ý \(F\left( x \right)\) và \(G\left( x \right)\) của \(f\left( x \right)\), rồi tính \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\). Nhận xét về kết quả nhận được.

Xem lời giải >>
Bài 20 :

Tính các tích phân sau:

a) \(\int\limits_1^3 {2xdx} \)

b) \(\int\limits_0^\pi  {\sin tdt} \)

c) \(\int\limits_0^{\ln 2} {{e^u}du} \)

Xem lời giải >>
Bài 21 :

Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2t - 0,03{t^2}\) \(\left( {0 \le t \le 10} \right)\), trong đó \(v\left( t \right)\) tính theo \({\rm{m/s}}\), thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.

a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.

b) Tính tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\).

Xem lời giải >>
Bài 22 :

Tính diện tích hình thang cong giới hạn bởi:

a) Đồ thị hàm số \(y = {x^2}\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\).

 

b) Đồ thị hàm số \(y = \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 3\).

 

Xem lời giải >>
Bài 23 :

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\), \(f\left( 0 \right) = 1\) và \(\int\limits_0^2 {f'\left( x \right)dx}  = 4\). Khi đó giá trị của \(f\left( 2 \right)\) bằng

A. 5.

B. -3.

C. 6.

D. 8.

Xem lời giải >>
Bài 24 :

Cho \(f\left( x \right)\) là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\). Giả sử \(F\left( x \right),G\left( x \right)\) là các nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\). Trong các phát biểu sau, phát biểu nào sai?

A. \(F\left( a \right) - F\left( b \right) = G\left( a \right) - G\left( b \right)\).

B. \(\int\limits_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right)\).

C. \(\int\limits_a^b {f\left( x \right)dx}  = f\left( b \right) - f\left( a \right)\).

D. \(\int\limits_a^b {f\left( x \right)dx}  = G\left( b \right) - G\left( a \right)\).

Xem lời giải >>
Bài 25 :

Phát biểu nào sau đây là đúng?

A. \(\int\limits_a^b {{e^x}dx}  = {e^{b + 1}} - {e^{a + 1}}\).

B. \(\int\limits_a^b {{e^x}dx}  = {e^{a + 1}} - {e^{b + 1}}\).

C. \(\int\limits_a^b {{e^x}dx}  = {e^b} - {e^a}\).

D. \(\int\limits_a^b {{e^x}dx}  = {e^a} - {e^b}\).

Xem lời giải >>
Bài 26 :

Tích phân \(\int\limits_a^b {\frac{1}{x}dx} \) bằng:

A. \(\ln b - \ln a\).

B. \(\left| {\ln b} \right| - \left| {\ln a} \right|\).

C. \(\ln \left| b \right| - \ln \left| a \right|\).

D. \(\ln \left| a \right| - \ln \left| b \right|\).

Xem lời giải >>
Bài 27 :

Cho \(\int\limits_{ - 1}^2 {g\left( x \right)dx}  = 6,G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên đoạn \(\left[ { - 1;2} \right]\) và \(G\left( { - 1} \right) = 8\). Tính \(G\left( 2 \right)\).

Xem lời giải >>
Bài 28 :

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Biết rằng đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Tính \(\int\limits_{ - 1}^1 {f'\left( x \right)dx} \).

Xem lời giải >>
Bài 29 :

Cho \(F(x)\) là một nguyên hàm của hàm \(f(x) = {2^x}\) và \(F(0) = 0\). Tính \(F(1)\).

Xem lời giải >>
Bài 30 :

Cho hàm số \(f(x) = 2x\).

a) Tìm các hàm số \(F(x),G(x)\) là nguyên hàm của \(f(x)\) trên đoạn \([a;b].\)

b) So sánh \(F(b) - F(a)\) và \(G(b) - G(a)\).

Xem lời giải >>