Tính chiều cao của một hình nó có đường sinh dài 20 cm và diện tích xung quanh bằng 240\(\pi \)cm2.
Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rn\) (với r là bán kính đáy và n là đường sinh của hình nón).
Ta có:\({S_{xq}} = \pi rn\)
suy ra r = \(\frac{{{S_{xq}}}}{{\pi .n}} = \frac{{240\pi }}{{\pi .20}} = 12\)cm.
Từ đó, ta có chiều cao của hình nón là:
\(\sqrt {{{20}^2} - {{12}^2}} = 16\) cm (Theo định lý Pythagore).
Các bài tập cùng chuyên đề
Người ta coi diện tích hình quạt SAB (xem Thực hành 2) chính là diện tích xung quanh của hình nón được tạo thành. Cho hình nón có đường sinh \(l = 9cm\) và bán kính đáy \(r = 5cm\). Tính diện tích mặt xung quanh của hình nón.
Cho hình nón có bán kính đáy \(R = 2cm\), độ dài đường sinh \(l = 5cm\). Diện tích xung quanh của hình nón đã cho bằng
A. \(\frac{{10\pi }}{3}\;c{m^2}\).
B. \(\frac{{50\pi }}{3}\;c{m^2}\).
C. \(20\pi \;c{m^2}\).
D. \(10\pi \;c{m^2}\).
Bạn Khôi làm một chiếc mũ sinh nhật bằng bìa cứng có dạng hình nón với đường kính đáy bằng 20cm, độ dài đường sinh bằng 30cm. Tính diện tích giấy để làm chiếc mũ sinh nhật trên (lấy \(\pi \approx 3,14\) và coi mép dán không đáng kể).
Cho một hình nón có bán kính r, có độ dài đường sinh l (Hình 6a). Cắt mặt xung quanh của hình nón theo một đường sinh của nó rồi trải phẳng ra, ta được hình quạt tròn (Hình 6b). Tính theo r và l:
a) Độ dài cung BB’;
b) Số đo cung BB’;
c) Diện tích của hình quạt tròn.
Tính diện tích xung quanh và diện tích toàn phần của hình nón có đường kính đáy d = 10 m và chiều cao h = 12 m (kết quả làm tròn đến hàng phần trăm).
Một cái mũ chú hề có kích thước như Hình 13. Hãy tính tổng diện tích giấy làm nên chiếc mũ (không tính phần hao hụt, kết quả làm tròn đến hàng đơn vị).
Diện tích xung quanh của hình nón có chiều cao 12 cm và bán kính đáy 5 cm là
A. 130\(\pi \)cm2.
B. 60\(\pi \)cm2.
C. 65\(\pi \)cm2.
D. 90\(\pi \)cm2.
Người ta cần sơn mặt bên trong của một chao đèn có dạng hình nón (không tính đáy) với bán kính đáy là 20 cm, độ dài đường sinh là 30 cm (Hình 1c). Hỏi diện tích cần sơn là bao nhiêu?
Một chiếc nón lá có dạng hình nón với đường kính đáy khoảng 44 cm, chiều cao khoảng 20 cm. Hỏi diện tích xung quanh của chiếc nón đó bằng bao nhiêu centimét vuông (làm tròn kết quả đến hàng đơn vị)?
Phần mái lá của một ngôi nhà có dạng hình nón (không có đáy) với đường kính đáy khoảng 12 m và độ dài đường sinh khoảng 8,5 m (Hình 26). Chi phí để làm phần mái lá đó là 250 000 đồng/1 \(m^2\). Hỏi tổng chi phí để làm toàn bộ phần mái nhà đó là bao nhiêu đồng?
Cắt mặt xung quanh của một hình nón có đường sinh dài 6 cm, bán kính đáy 2 cm (Hình 9.22a) dọc theo đường sinh SA của nó rồi trải phẳng ra, ta được hình khai triển của hình nón đó (Hình 9.22b).
a) Tính chu vi đáy của hình nón, từ đó cho biết độ dài cung ứng với hình quạt tròn ở Hình 9.22b.
b) Tính diện tích của hình quạt tròn khai triển trong Hình 9.22b.
Nón lá phổ biến ở cả ba miền của nước ta nhưng nón lá Huế từ lâu đã trở thành nguồn cảm hứng cho thi ca. Nón Huế thường có màu trắng xanh, thanh tao, mỏng, nhẹ, mềm mại. Nón lá Huế có khung gồm 16 vòng cách đều nhau (khuôn nón còn được gọi là khung chằm) và được lợp bằng nhiều lớp lá của cây lá nón trồng ở huyện A Lưới và huyện Nam Đông, thuộc tỉnh Thừa Thiên Huế. Tính diện tích bề mặt ngoài (theo centimet vuông) của một chiếc nón lá có đường kính đáy 41 cm và chiều cao 18 cm (làm tròn kết quả đến hàng phần mười).