Đề bài

Tìm số tự nhiên \(x\) nhỏ nhất  biết \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \,75.\)

  • A.

    $1650$                    

  • B.

    $3750$                  

  • C.

    $4950$            

  • D.

    $3300$

Phương pháp giải

+ Từ đề bài suy ra \(x \in \)BC\(\left( {105;175;385} \right)\) mà \(x\) nhỏ nhất nên \(x = \) BCNN\(\left( {45;75;110} \right)\).

+ Tìm bội chung nhỏ nhất theo các bước

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Lời giải của GV Loigiaihay.com

Vì \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \, 75\) nên \(x \, \in BC\left( {45;75;110} \right)\) mà \(x\) nhỏ nhất nên  \(x = BCNN\left( {45;75;110} \right)\)

Ta có \(45 = {3^2}.5;\,75 = {3.5^2};\,110 = 2.5.11\)

Nên \(BCNN\left( {45;75;110} \right) = {2.3^2}{.5^2}.11\)\( = 4950.\)

Đáp án : C