Đề bài

Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.

  • A.

    $n = 11$                                

  • B.

    $n = 13$                                 

  • C.

    $n = 2$                                    

  • D.

    $n = 1$

Phương pháp giải

+ Phân tích \({n^2} + 12n = n\left( {n + 12} \right)\)

+ Dựa vào định nghĩa số nguyên tố để lập luận và suy ra các giá trị của \(n.\)

Lời giải của GV Loigiaihay.com

Ta có \({n^2} + 12n = n\left( {n + 12} \right);\,n + 12 > 1\) nên để \({n^2} + 12n\) là số nguyên tố thì \(n = 1.\)

Thử lại \({n^2} + 12n = {1^2} + 12.1 = 13\) (nguyên tố)

Vậy với \(n = 1\) thì \({n^2} + 12n\) là số nguyên tố.

Đáp án : D