Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
+ Phân tích \(\overline {abcd} = 1000a + 100b + 10c + d\) từ đó tính được \(A.\)
+ Dựa vào tính chất chia hết của một tổng và dấu hiệu chia hết cho \(9\) để giải bài toán.
Ta có \(A = \overline {abcd} - \left( {a + b + c + d} \right)\)\( = 1000a + 100b + 10c + d - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c + \left( {a + b + c + d} \right) - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c\)
Mà \(999 \, \vdots \, 9;\,99 \, \vdots \, 9;\,9 \, \vdots \, 9\) nên \(A \, \vdots \, 9.\)
Đáp án : C



