Một hộp chứa 12 chiếc thẻ có kích thước như nhau, trong đó có 5 chiếc thẻ màu xanh được đánh số từ 1 đến 5; có 4 chiếc thẻ màu đỏ được đánh số từ 1 đến 4 và 3 chiếc thẻ màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 chiếc thẻ từ hộp, tính xác suất để 2 chiếc thẻ được lấy vừa khác màu vừa khác số.
-
A.
\(\frac{{29}}{{66}}.\)
-
B.
\(\frac{{37}}{{66}}.\)
-
C.
\(\frac{8}{{33}}.\)
-
D.
\(\frac{{14}}{{33}}.\)
Giả sử phép thử T có không gian mẫu \(n\left( {\Omega {\rm{\;}}} \right)\) là một tập hữu hạn và các kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và \(\Omega {\rm{\;}}\)A là một tập hợp các kết quả thuận lợi cho A thì xác suất của A là một số , kí hiệu là P(A), được xác định bởi công thức :
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\Omega {\rm{\;}}} \right)}} = \frac{{sophantucuaA}}{{sophantucua\Omega \;}}\)
Không gian mẫu là số cách lấy tùy ý 2 chiếc thẻ từ 12 chiếc thẻ \( \Rightarrow \) Số phần tử của không gian mẫu là \(n\left( {\Omega {\rm{\;}}} \right) = C_{12}^2 = 66\).
Gọi A là biến cố: “2 chiếc thẻ lấy được vừa khác màu vừa khác số”.
TH1: 1 thẻ xanh + 1 thẻ đỏ không cùng số.
Chọn 1 thẻ đỏ có 4 cách, chọn 1 thẻ xanh có 4 cách (không chọn thẻ cùng số với thẻ đỏ).
\( \Rightarrow \) Có \(4.4 = 16\) cách.
TH2: 1 thẻ xanh + 1 thẻ vàng không cùng số.
Chọn 1 thẻ vàng có 3 cách, chọn 1 thẻ xanh có 4 cách (không chọn thẻ cùng số với thẻ vàng).
\( \Rightarrow \) Có \(3.4 = 12\) cách.
TH3: 1 thẻ đỏ + 1 thẻ vàng không cùng số.
Chọn 1 thẻ vàng có 3 cách, chọn 1 thẻ đỏ có 3 cách (không chọn thẻ cùng số với thẻ vàng).
\( \Rightarrow \) Có \(3.3 = 9\) cách.
\( \Rightarrow n\left( A \right) = 16 + 12 + 9 = 37\).
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\Omega {\rm{\;}}} \right)}} = \frac{{37}}{{66}}\).
Đáp án B.
Đáp án : B
Các bài tập cùng chuyên đề
Với b,c là hai số thực dương tùy ý thỏa mãn \({\rm{lo}}{{\rm{g}}_5}b \ge {\rm{lo}}{{\rm{g}}_5}c\), khẳng định nào dưới đây là đúng?
Đạo hàm của hàm số \(y = {2^x}\) là:
Nghiệm của phương trình \({2^x} = 3\) là
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh \(a,{\mkern 1mu} {\mkern 1mu} AA' \bot \left( {ABCD} \right)\) và \(AA' = 3a.\) Thể tích của khối lăng trụ đã cho bằng
Cho hình lập phương \(ABCD \cdot A'B'C'D'\) có cạnh bằng \(a\) (tham khảo hình vẽ).
Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\). Giá trị của \({\rm{sin}}\varphi \) bằng
Hệ số góc tiếp tuyến của đồ thị hàm số \(y = 2{x^2} - 2\) tại điểm có hoành độ \({x_0} = 2\)là:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc với đáy, \(SA = a\). Khoảng cách giữa hai đường thẳng SB và CD là
Có hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,6. Xác suất để có ít nhất một người bắn trúng là:
Tính đạo hàm của hàm số sau \(y = \frac{{ - 3x + 4}}{{x - 2}}\).
Cho hình chóp \(S.ABC,{\mkern 1mu} SA\) vuông góc với đáy, \(J\) là hình chiếu của \(A\) trên BC. Khẳng định nào sau đây là đúng?
Có ba chiếc hộp: hộp I có 4 bi đỏ và 5 bi xanh, hộp II có 3 bi đỏ và 2 bi đen, hộp III có 5 bi đỏ và 3 bi vàng. Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được màu đỏ bằng
Tập nghiệm của bất phương trình \({\rm{lo}}{{\rm{g}}_7}\left( {5x - 2} \right) > {\rm{lo}}{{\rm{g}}_7}\left( {6 - 3x} \right)\) là
Tập nghiệm của bất phương trình \({5^{x + 2}} < {\left( {\frac{1}{{25}}} \right)^{ - x}}\) là
Hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \)có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({9^x} - {2.6^x} + m{.4^x} = 0\) có hai nghiệm trái dấu.
Cho chuyển động thẳng xác định bởi phương trình \(S = {\rm{\;}} - {t^3} + 3{t^2} + 9t\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
Tính tổng tất cả các nghiệm nguyên của bất phương trình \(\log \left( {{x^2} + 2x + 3} \right) \le \log 6\)
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \(AB = a\sqrt 3 \), AC = AA’ = a. Giá trị sin của góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng
Một lớp có 60 sinh viên trong đó 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một sinh viên. Tính xác suất của các biến cố sinh viên được chọn không học tiếng Anh và tiếng Pháp.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy một góc bằng \({60^\circ }.\) Thể tích khối lăng trụ ABC.A'B'C' bằng: